Advertisement

Abstract

An ultimate goal of spintronic research is the realization of concepts for atomic-scale all-spin–based devices. We combined bottom-up atomic fabrication with spin-resolved scanning tunneling microscopy to construct and read out atomic-scale model systems performing logic operations. Our concept uses substrate-mediated indirect exchange coupling to achieve logical interconnection between individual atomic spins. Combined with spin frustration, this concept enables various logical operations between inputs, such as NOT and OR.
Get full access to this article

View all available purchase options and get full access to this article.

Already a Subscriber?

Supplementary Material

File (khajetoorians-som.pdf)
File (pap.pdf)

References and Notes

1
Hisamoto D., et al., FinFET: A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron. Dev. 47, 2320 (2000).
2
Lent C. S., Tougaw P. D., A device architecture for computing with quantum dots. Proc. IEEE 85, 541 (1997).
3
Amlani I., et al., Digital logic gate using quantum-dot cellular automata. Science 284, 289 (1999).
4
Heinrich A. J., Lutz C. P., Gupta J. A., Eigler D. M., Molecule cascades. Science 298, 1381 (2002).
5
Behin-Aein B., Datta D., Salahuddin S., Datta S., Proposal for an all-spin logic device with built-in memory. Nat. Nano. 5, 266 (2010).
6
Imre A., et al., Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205 (2006).
7
Allwood D. A., et al., Magnetic domain-wall logic. Science 309, 1688 (2005).
8
Xu P., et al., An all-metallic logic gate based on current-driven domain wall motion. Nat. Nano. 3, 97 (2008).
9
Parkin S. S. P., Hayashi M., Thomas L., Magnetic domain-wall racetrack memory. Science 320, 190 (2008).
10
Loss D., DiVincenzo D. P., Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998).
11
Neumann P., et al., Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6, 249 (2010).
12
Wolf S. A., et al., Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001).
13
Eigler D. M., Schweizer E. K., Positioning single atoms with a scanning tunneling microscope. Nature 344, 524 (1990).
14
Ruess F. J., et al., Realization of atomically controlled dopant devices in silicon. Small 3, 563 (2007).
15
Moon C. R., Mattos L. S., Foster B. K., Zeltzer G., Manoharan H. C., Quantum holographic encoding in a two-dimensional electron gas. Nat. Nano. 4, 167 (2009).
16
Meier F., Zhou L., Wiebe J., Wiesendanger R., Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82 (2008).
17
Heinrich A. J., Gupta J. A., Lutz C. P., Eigler D. M., Single-atom spin-flip spectroscopy. Science 306, 466 (2004).
18
Zhou L., et al., Strength and directionality of surface Ruderman–Kittel–Kasuya–Yosida interaction mapped on the atomic scale. Nat. Phys. 6, 187 (2010).
19
Materials and methods are available as supporting material on Science Online.
20
Pietzsch O., Kubetzka A., Bode M., Wiesendanger R., Spin-polarized scanning tunneling spectroscopy of nanoscale cobalt islands on Cu(111). Phys. Rev. Lett. 92, 057202 (2004).
21
Khajetoorians A. A., et al., Itinerant nature of atom-magnetization excitation by tunneling electrons. Phys. Rev. Lett. 106, 037205 (2011).
22
Wiebe J., et al., A 300mK ultra-high vacuum scanning tunneling microscope for spin-resolved spectroscopy at high energy resolution. Rev. Sci. Instrum. 75, 4871 (2004).
23
Crommie M. F., Lutz C. P., Eigler D. M., Confinement of electrons to quantum corrals on a metal surface. Science 262, 218 (1993).
24
Brovko O. O., Ignatiev P. A., Stepanyuk V. S., Bruno P., Tailoring exchange interactions in engineered nanostructures: An ab initio study. Phys. Rev. Lett. 101, 036809 (2008).
25
Hirjibehedin C. F., Lutz C. P., Heinrich A. J., Spin coupling in engineered atomic structures. Science 312, 1021 (2006).

Information & Authors

Information

Published In

Science
Volume 332Issue 603327 May 2011
Pages: 1062 - 1064

History

Received: 15 December 2010
Accepted: 6 April 2011
5 May 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Alexander Ako Khajetoorians
Institute of Applied Physics, Hamburg University, Jungiusstrasse 11, D-20355 Hamburg, Germany.
Institute of Applied Physics, Hamburg University, Jungiusstrasse 11, D-20355 Hamburg, Germany.
Bruno Chilian
Institute of Applied Physics, Hamburg University, Jungiusstrasse 11, D-20355 Hamburg, Germany.
Roland Wiesendanger
Institute of Applied Physics, Hamburg University, Jungiusstrasse 11, D-20355 Hamburg, Germany.

Notes

*To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

View Options

Media

Figures

Other

Tables

Share

Information & Authors
Published In
issue cover image
Science
Volume 332|Issue 6033
27 May 2011
Article Versions
You are viewing the most recent version of this article.
Submission history
Received:15 December 2010
Accepted:6 April 2011
Published in print:27 May 2011
Metrics & Citations
Article Usage
Altmetrics
Export citation

Select the format you want to export the citation of this publication.

Cited by
  1. Cluster mean-field theory studies of the frustrated two-dimensional quantum-mechanical Heisenberg model , Annals of Physics, 427, (168414), (2021).https://doi.org/10.1016/j.aop.2021.168414
    Crossref
  2. Curvature-driven homogeneous Dzyaloshinskii–Moriya interaction and emergent weak ferromagnetism in anisotropic antiferromagnetic spin chains, Applied Physics Letters, 118, 18, (182405), (2021).https://doi.org/10.1063/5.0048823
    Crossref
  3. An atomic Boltzmann machine capable of self-adaption, Nature Nanotechnology, 16, 4, (414-420), (2021).https://doi.org/10.1038/s41565-020-00838-4
    Crossref
  4. Engineering atomic-scale magnetic fields by dysprosium single atom magnets, Nature Communications, 12, 1, (2021).https://doi.org/10.1038/s41467-021-24465-2
    Crossref
  5. Designing high-performance spin filters and valves based on metal-salophen molecular chains, Physica E: Low-dimensional Systems and Nanostructures, 131, (114737), (2021).https://doi.org/10.1016/j.physe.2021.114737
    Crossref
  6. Trends in the hyperfine interactions of magnetic adatoms on thin insulating layers, npj Computational Materials, 7, 1, (2021).https://doi.org/10.1038/s41524-021-00556-y
    Crossref
  7. Large magnetic anisotropy in Tetraoxa[8]circulene-based organometallic nanosheet, Journal of Magnetism and Magnetic Materials, 535, (168068), (2021).https://doi.org/10.1016/j.jmmm.2021.168068
    Crossref
  8. Spin Half‐Adder, physica status solidi (b), 258, 5, (2000635), (2021).https://doi.org/10.1002/pssb.202000635
    Crossref
  9. Toward single-atom memory, Science, 352, 6283, (296-297), (2021)./doi/10.1126/science.aaf2481
    Abstract
  10. Hitting the limit of magnetic anisotropy, Science, 344, 6187, (976-977), (2021)./doi/10.1126/science.1254402
    Abstract
  11. See more
Loading...
Share
Share article link

Share on social media
Get Access
Log in to view the full text

AAAS Log in

AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions, as well as limited access for those who register for access.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View Options
Tables
References

(0)eLetters

No eLetters have been published for this article yet.

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.