Advertisement

An activity lift for platinum

Platinum is an excellent but expensive catalyst for the oxygen reduction reaction (ORR), which is critical for fuel cells. Alloying platinum with other metals can create shells of platinum on cores of less expensive metals, which increases its surface exposure, and compressive strain in the layer can also boost its activity (see the Perspective by Stephens et al.). Bu et al. produced nanoplates—platinum-lead cores covered with platinum shells—that were in tensile strain. These nanoplates had high and stable ORR activity, which theory suggests arises from the strain optimizing the platinum-oxygen bond strength. Li et al. optimized both the amount of surface-exposed platinum and the specific activity. They made nanowires with a nickel oxide core and a platinum shell, annealed them to the metal alloy, and then leached out the nickel to form a rough surface. The mass activity was about double the best reported values from previous studies.
Science, this issue p. 1410, p. 1414; see also p. 1378

Abstract

Compressive surface strains have been necessary to boost oxygen reduction reaction (ORR) activity in core/shell M/platinum (Pt) catalysts (where M can be nickel, cobalt, or iron). We report on a class of platinum-lead/platinum (PtPb/Pt) core/shell nanoplate catalysts that exhibit large biaxial strains. The stable Pt (110) facets of the nanoplates have high ORR specific and mass activities that reach 7.8 milliampere (mA) per centimeter squared and 4.3 ampere per milligram of platinum at 0.9 volts versus the reversible hydrogen electrode (RHE), respectively. Density functional theory calculations reveal that the edge-Pt and top (bottom)–Pt (110) facets undergo large tensile strains that help optimize the Pt-O bond strength. The intermetallic core and uniform four layers of Pt shell of the PtPb/Pt nanoplates appear to underlie the high endurance of these catalysts, which can undergo 50,000 voltage cycles with negligible activity decay and no apparent structure and composition changes.
Get full access to this article

View all available purchase options and get full access to this article.

Already a Subscriber?

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S28
Tables S1 to S3
References (3984)

Resources

File (bu-sm.pdf)

References and Notes

1
Winter M., Brodd R. J., What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004).
2
Chen A., Holt-Hindle P., Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 110, 3767–3804 (2010).
3
Dresselhaus M. S., Thomas I. L., Alternative energy technologies. Nature 414, 332–337 (2001).
4
Strasser P., Catalysts by Platonic design. Science 349, 379–380 (2015).
5
Gasteiger H. A., Kocha S. S., Sompalli B., Wagner F. T., Activity benchmarks and requirements for Pt, Pt-Alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).
6
Gasteiger H. A., Marković N. M., Just a dream—or future reality? Science 324, 48–49 (2009).
7
Nørskov J. K., Bligaard T., Rossmeisl J., Christensen C. H., Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).
8
Choi S. I., Xie S., Shao M., Odell J. H., Lu N., Peng H. C., Protsailo L., Guerrero S., Park J., Xia X., Wang J., Kim M. J., Xia Y., Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction. Nano Lett. 13, 3420–3425 (2013).
9
Saleem F., Zhang Z., Xu B., Xu X., He P., Wang X., Ultrathin Pt-Cu nanosheets and nanocones. J. Am. Chem. Soc. 135, 18304–18307 (2013).
10
Xu X., Zhang X., Sun H., Yang Y., Dai X., Gao J., Li X., Zhang P., Wang H. H., Yu N. F., Sun S. G., Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 53, 12522–12527 (2014).
11
Bian T., Zhang H., Jiang Y., Jin C., Wu J., Yang H., Yang D., Epitaxial growth of twinned Au-Pt core-shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett. 15, 7808–7815 (2015).
12
Zhang L., Roling L. T., Wang X., Vara M., Chi M., Liu J., Choi S. I., Park J., Herron J. A., Xie Z., Mavrikakis M., Xia Y., NANOCATALYSTS. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015).
13
Wang C., Chi M., Li D., Strmcnik D., van der Vliet D., Wang G., Komanicky V., Chang K. C., Paulikas A. P., Tripkovic D., Pearson J., More K. L., Marković N. M., Stamenkovic V. R., Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 133, 14396–14403 (2011).
14
Zhu H., Zhang S., Guo S., Su D., Sun S., Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction. J. Am. Chem. Soc. 135, 7130–7133 (2013).
15
Zhang J., Yang H., Fang J., Zou S., Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra. Nano Lett. 10, 638–644 (2010).
16
Yang H., Zhang J., Sun K., Zou S., Fang J., Enhancing by weakening: Electrooxidation of methanol on Pt3Co and Pt nanocubes. Angew. Chem. Int. Ed. 49, 6848–6851 (2010).
17
Wang D., Xin H. L. L., Hovden R., Wang H., Yu Y., Muller D. A., DiSalvo F. J., Abruña H. D., Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013).
18
Ghosh T., Vukmirovic M. B., DiSalvo F. J., Adzic R. R., Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: Potential for significantly improving properties. J. Am. Chem. Soc. 132, 906–907 (2010).
19
Greeley J., Stephens I. E. L., Bondarenko A. S., Johansson T. P., Hansen H. A., Jaramillo T. F., Rossmeisl J., Chorkendorff I., Nørskov J. K., Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).
20
Francis M. F., Curtin W. A., Mechanical work makes important contributions to surface chemistry at steps. Nat. Commun. 6, 6261 (2015).
21
Chen C., Kang Y., Huo Z., Zhu Z., Huang W., Xin H. L. L., Snyder J. D., Li D., Herron J. A., Mavrikakis M., Chi M., More K. L., Li Y., Marković N. M., Somorjai G. A., Yang P., Stamenkovic V. R., Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).
22
Huang X. Q., Zhao Z. P., Cao L., Chen Y., Zhu E. B., Lin Z. Y., Li M. F., Yan A. M., Zettl A., Wang Y. M., Duan X. F., Mueller T., Huang Y., High-performance transition metal−doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2015).
23
See the supplementary materials on Science Online.
24
Marković N. M., Adžić R. R., Cahan B. D., Yeager E. B., Structural effects in electrocatalysis: Oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J. Electroanal. Chem. 377, 249–259 (1994).
25
Maciá M. D., Campiña J. M., Herrero E., Feliu J. M., On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J. Electroanal. Chem. 564, 141–150 (2004).
26
Huang X., Tang S., Mu X., Dai Y., Chen G., Zhou Z., Ruan F., Yang Z., Zheng N., Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 6, 28–32 (2011).
27
Xia X., Zeng J., Zhang Q., Moran C. H., Xia Y., Recent developments in shape-controlled synthesis of silver nanocrystals. J. Phys. Chem. C 116, 21647–21656 (2012).
28
Chen L., Ji F., Xu Y., He L., Mi Y., Bao F., Sun B., Zhang X., Zhang Q., High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 14, 7201–7206 (2014).
29
Mazumder V., Sun S., Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation J. Am. Chem. Soc. 131, 4588–4589 (2009).
30
U.S. Department of Energy, Technical Plan: Fuel Cells (2016); www.energy.gov/sites/prod/files/2016/06/f32/fcto_myrdd_fuel_cells_0.pdf.
31
Roychowdhury C., Matsumoto F., Zeldovich V. B., Warren S. C., Mutolo P. F., Ballesteros M., Wiesner U., Abruña H. D., DiSalvo F. J., Synthesis, characterization, and electrocatalytic activity of PtBi and PtPb nanoparticles prepared by borohydride reduction in methanol. Chem. Mater. 18, 3365–3372 (2006).
32
Nørskov J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J. R., Bligaard T., Jónsson H., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).
33
Stamenkovic V., Mun B. S., Mayrhofer K. J. J., Ross P. N., Marković N. M., Rossmeisl J., Greeley J., Nørskov J. K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45, 2897–2901 (2006).
34
Zhang X., Lu G., Computational design of core/shell nanoparticles for oxygen reduction reactions. J. Phys. Chem. Lett. 5, 292–297 (2014).
35
Mavrikakis M., Hammer B., Nørskov J. K., Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).
36
Strasser P., Koh S., Anniyev T., Greeley J., More K., Yu C., Liu Z., Kaya S., Nordlund D., Ogasawara H., Toney M. F., Nilsson A., Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).
37
Li L., Larsen A. H., Romero N. A., Morozov V. A., Glinsvad C., Abild-Pedersen F., Greeley J., Jacobsen K. W., Nørskov J. K., Investigation of catalytic finite-size-effects of platinum metal clusters. J. Phys. Chem. Lett. 4, 222–226 (2013).
38
van der Vliet D. F., Wang C., Tripkovic D., Strmcnik D., Zhang X. F., Debe M. K., Atanasoski R. T., Marković N. M., Stamenkovic V. R., Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nat. Mater. 11, 1051–1058 (2012).
39
Yu H. S., Wei X. J., Li J., Gu S. Q., Zhang S., Wang L. H., Ma J. Y., Li L. N., Gao Q., Si R., Sun F. F., Wang Y., Song F., Xu H. J., Yu X. H., Zou Y., Wang J. Q., Jiang Z., Huang Y. Y., The XAFS beamline of SSRF. Nucl. Sci. Tech. 26, 050102 (2015).
40
Newville M., IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001).
41
Kresse G., Hafner J., Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
42
Kresse G., Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
43
Blöchl P. E., Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
44
Perdew J. P., Burke K., Ernzerhof M., Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
45
Monkhorst H. J., Pack J. D., Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
46
Chen S., Ferreira P. J., Sheng W., Yabuuchi N., Allard L. F., Shao-Horn Y., Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: Direct evidence of percolated and sandwich-segregation structures. J. Am. Chem. Soc. 130, 13818–13819 (2008).
47
Lim B., Jiang M., Camargo P. H., Cho E. C., Tao J., Lu X., Zhu Y., Xia Y., Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009).
48
Guo S., Li D., Zhu H., Zhang S., Markovic N. M., Stamenkovic V. R., Sun S., FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 3465–3468 (2013).
49
Cui C., Gan L., Li H.-H., Yu S.-H., Heggen M., Strasser P., Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12, 5885–5889 (2012).
50
Cui C., Gan L., Heggen M., Rudi S., Strasser P., Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).
51
Hernandez-Fernandez P., Masini F., McCarthy D. N., Strebel C. E., Friebel D., Deiana D., Malacrida P., Nierhoff A., Bodin A., Wise A. M., Nielsen J. H., Hansen T. W., Nilsson A., Stephens I. E., Chorkendorff I., Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nat. Chem. 6, 732–738 (2014).
52
Lang X. Y., Han G. F., Xiao B. B., Gu L., Yang Z. Z., Wen Z., Zhu Y. F., Zhao M., Li J. C., Jiang Q., Mesostructured intermetallic compounds of platinum and non-transition metals for enhanced electrocatalysis of oxygen reduction reaction. Adv. Funct. Mater. 25, 230–237 (2015).
53
Li H.-H., Ma S.-Y., Fu Q.-Q., Liu X.-J., Wu L., Yu S.-H., Scalable bromide-triggered synthesis of [email protected] core-shell ultrathin nanowires with enhanced electrocatalytic performance toward oxygen reduction reaction. J. Am. Chem. Soc. 137, 7862–7868 (2015).
54
Wang X., Choi S.-I., Roling L. T., Luo M., Ma C., Zhang L., Chi M., Liu J., Xie Z., Herron J. A., Mavrikakis M., Xia Y., Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 6, 7594 (2015).
55
Gasteiger H. A., Markovic N., Ross P. N., Cairns E. J., Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. J. Phys. Chem. 97, 12020–12029 (1993).
56
Maksimuk S., Yang S., Peng Z., Yang H., Synthesis and characterization of ordered intermetallic PtPb nanorods. J. Am. Chem. Soc. 129, 8684–8685 (2007).
57
Liu Z., Guo B., Tay S. W., Hong L., Zhang X., Physical and electrochemical characterizations of PtPb/C catalyst prepared by pyrolysis of platinum (II) and lead (II) acetylacetonate. J. Power Sources 184, 16–22 (2008).
58
Xu D., Liu Z., Yang H., Liu Q., Zhang J., Fang J., Zou S., Sun K., Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angew. Chem. Int. Ed. 48, 4217–4221 (2009).
59
Guo S., Zhang S., Sun X., Sun S., Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc. 133, 15354–15357 (2011).
60
Yin A.-X., Min X.-Q., Zhang Y.-W., Yan C.-H., Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J. Am. Chem. Soc. 133, 3816–3819 (2011).
61
Wu Y., Wang D., Niu Z., Chen P., Zhou G., Li Y., A strategy for designing a concave Pt-Ni alloy through controllable chemical etching. Angew. Chem. Int. Ed. 51, 12524–12528 (2012).
62
Kang Y., Pyo J. B., Ye X., Gordon T. R., Murray C. B., Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 6, 5642–5647 (2012).
63
Huang Y., Zheng S., Lin X., Su L., Guo Y., Microwave synthesis and electrochemical performance of a PtPb alloy catalyst for methanol and formic acid oxidation. Electrochim. Acta 63, 346–353 (2012).
64
Huang Y., Cai J., Guo Y., Roles of Pb and MnOx in PtPb/MnOx-CNTs catalyst for methanol electro-oxidation. Int. J. Hydrogen Energy 37, 1263–1271 (2012).
65
Salazar-Banda G. R., Eguiluz K. I. B., Pupo M. M. S., Suffredini H. B., Calegaro M. L., Avaca L. A., The influence of different co-catalysts in Pt-based ternary and quaternary electro-catalysts on the electro-oxidation of methanol and ethanol in acid media. J. Electroanal. Chem. 668, 13–25 (2012).
66
Matsumoto F., Ethanol and methanol oxidation activity of PtPb, PtBi, and PtBi2 intermetallic compounds in alkaline media. Electrochem. 80, 132–138 (2012).
67
Suntivich J., Xu Z., Carlton C. E., Kim J., Han B., Lee S. W., Bonnet N., Marzari N., Allard L. F., Gasteiger H. A., Hamad-Schifferli K., Shao-Horn Y., Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 135, 7985–7991 (2013).
68
Cui Z., Chen H., Zhao M., Marshall D., Yu Y., Abruña H., DiSalvo F. J., Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts. J. Am. Chem. Soc. 136, 10206–10209 (2014).
69
Sun X., Jiang K., Zhang N., Guo S., Huang X., Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 9, 7634–7640 (2015).
70
Scofield M. E., Koenigsmann C., Wang L., Liu H., Wong S. S., Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 8, 350–363 (2015).
71
Permyakova A. A., Han B., Jensen J. O., Bjerrum N. J., Shao-Horn Y., Pt-Si bifunctional surfaces for CO and methanol electro-oxidation. J. Phys. Chem. C 119, 8023–8031 (2015).
72
Zhang N., Guo S., Zhu X., Guo J., Huang X., Hierarchical Pt/PtxPb core/shell nanowires as efficient catalysts for electrooxidation of liquid fuels. Chem. Mater. 28, 4447–4452 (2016).
73
Huang M., Dong G., Wang N., Xu J., Guan L., Highly dispersive Pt atoms on the surface of RuNi nanoparticles with remarkably enhanced catalytic performance for ethanol oxidation. Energy Environ. Sci. 4, 4513–4516 (2011).
74
Liu B., Chia Z.-W., Cheng C.-H., Lee J.-Y., Promotional effects of Ir addition in carbon-supported Pt5Rh electrocatalysts for the electrooxidation of ethanol at room temperature. Energy Fuels 25, 3135–3141 (2011).
75
Huang Y., Cai J., Liu M., Guo Y., Fabrication of a novel PtPbBi/C catalyst for ethanol electro-oxidation in alkaline medium. Electrochim. Acta 83, 1–6 (2012).
76
Chen D., Zhao Y., Fan Y., Peng X., Wang X., Tian J., Synthesis of [email protected] supported on graphene by galvanic displacement reaction for improving ethanol electro-oxidation. J. Mater. Chem. A Mater. Energy Sustain. 1, 13227–13232 (2013).
77
Jin B., Sun H., Huang M., Zhao L., Ethanol electro-oxidation on novel electrocatalyst PtVSnO2/C in acidic media. Electrochim. Acta 142, 223–227 (2014).
78
Li S.-S., Lv J.-J., Teng L.-N., Wang A.-J., Chen J.-R., Feng J.-J., Facile synthesis of [email protected] nanorings supported on reduced graphene oxide with enhanced electrocatalytic properties. ACS Appl. Mater. Interfaces 6, 10549–10555 (2014).
79
Kodiyath R., Ramesh G. V., Koudelkova E., Tanabe T., Ito M., Manikandan M., Ueda S., Fujita T., Umezawa N., Noguchi H., Ariga K., Abe H., Promoted C–C bond cleavage over intermetallic TaPt3 catalyst toward low-temperature energy extraction from ethanol. Energy Environ. Sci. 8, 1685–1689 (2015).
80
Fan Y., Liu P.-F., Zhang Z.-W., Cui Y., Zhang Y., Three-dimensional hierarchical porous platinum-copper alloy networks with enhanced catalytic activity towards methanol and ethanol electro-oxidation. J. Power Sources 296, 282–289 (2015).
81
Gunji T., Tanabe T., Jeevagan A. J., Usui S., Tsuda T., Kaneko S., Saravanan G., Abe H., Matsumoto F., Facile route for the preparation of ordered intermetallic Pt3Pb-PtPb core-shell nanoparticles and its enhanced activity for alkaline methanol and ethanol oxidation. J. Power Sources 273, 990–998 (2015).
82
Wu F., Zhang D., Peng M., Yu Z., Wang X., Guo G., Sun Y., Microfluidic synthesis enables dense and uniform loading of surfactant-free PtSn nanocrystals on carbon supports for enhanced ethanol oxidation. Angew. Chem. Int. Ed. 55, 4952–4956 (2016).
83
Ding J., Bu L., Guo S., Zhao Z., Zhu E., Huang Y., Huang X., Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis. Nano Lett. 16, 2762–2767 (2016).
84
Jana R., Peter S. C., One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application. J. Solid State Chem. 242, 133–139 (2016).

Information & Authors

Information

Published In

Science
Volume 354 | Issue 6318
16 December 2016

Submission history

Received: 21 July 2016
Accepted: 2 November 2016
Published in print: 16 December 2016

Permissions

Request permissions for this article.

Acknowledgments

This work was financially supported by the National Key Research and Development Program of China (2016YFB0100201), the National Natural Science Foundation of China (21571135 and 51671003), the Ministry of Science and Technology (2016YFA0204100), the start-up funding from Soochow University and Peking University, Young Thousand Talented Program, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Part of the electron microscopy work was performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Science, under contract DE-SC0012704. The work at California State University Northridge was supported by the U.S. Army Research Office via the MURI grant W911NF-11-1-0353. We thank S. Cheng for his help in the simulation of STEM imaging. All data are reported in the main text and supplementary materials.

Authors

Affiliations

Lingzheng Bu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China.
Nan Zhang
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China.
Department of Materials Science and Engineering, and Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China.
The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), College of Engineering, Peking University, Beijing 100871, China.
Key Laboratory of Theory and Technology of Advanced Batteries Materials, College of Engineering, Peking University, Beijing 100871, China.
Xu Zhang
Department of Physics and Astronomy, California State University, Northridge, CA 91330, USA.
Jing Li
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
Jianlin Yao
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China.
Tao Wu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China.
Gang Lu
Department of Physics and Astronomy, California State University, Northridge, CA 91330, USA.
Jing-Yuan Ma
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China.
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
Xiaoqing Huang* [email protected]
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu 215123, China.

Notes

*Corresponding author. Email: [email protected] (S.G.); [email protected] (D.S.); [email protected] (X.H.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by
  1. An ultralow-loading platinum alloy efficient ORR electrocatalyst based on the surface-contracted hollow structure, Chemical Engineering Journal, 428, (131569), (2022).https://doi.org/10.1016/j.cej.2021.131569
    Crossref
  2. Exploiting H-induced lattice expansion in β-palladium hydride for enhanced catalytic activities toward oxygen reduction reaction, Journal of Materials Science & Technology, 98, (205-211), (2022).https://doi.org/10.1016/j.jmst.2021.04.052
    Crossref
  3. Porous, thick nitrogen-doped carbon encapsulated large PtNi core-shell nanoparticles for oxygen reduction reaction with extreme stability and activity, Carbon, 186, (36-45), (2022).https://doi.org/10.1016/j.carbon.2021.10.004
    Crossref
  4. Surface unsaturated WOx activating PtNi alloy nanowires for oxygen reduction reaction, Journal of Colloid and Interface Science, 607, (1928-1935), (2022).https://doi.org/10.1016/j.jcis.2021.10.010
    Crossref
  5. Deep learning for mapping element distribution of high-entropy alloys in scanning transmission electron microscopy images, Computational Materials Science, 201, (110905), (2022).https://doi.org/10.1016/j.commatsci.2021.110905
    Crossref
  6. Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (M = Co, Ni) nanoflowers, Journal of Colloid and Interface Science, 607, (1411-1423), (2022).https://doi.org/10.1016/j.jcis.2021.09.060
    Crossref
  7. Photo-promoted in situ reduction and stabilization of Pd nanoparticles by H2 at photo-insensitive Sm2O3 nanorods, Journal of Colloid and Interface Science, 607, (479-487), (2022).https://doi.org/10.1016/j.jcis.2021.08.184
    Crossref
  8. Heterostructure nanocomposite with local surface plasmon resonance effect enhanced photocatalytic activity—a critical review, Journal of Physics D: Applied Physics, 55, 4, (043002), (2021).https://doi.org/10.1088/1361-6463/ac2cac
    Crossref
  9. Interface engineering in low-dimensional bismuth-based materials for photoreduction reactions, Journal of Materials Chemistry A, 9, 5, (2662-2677), (2021).https://doi.org/10.1039/D0TA10549J
    Crossref
  10. Strain engineering to tune the performance of CO oxidation on Cu2O(1 1 1) surface: A theoretical study, Applied Surface Science, 540, (148331), (2021).https://doi.org/10.1016/j.apsusc.2020.148331
    Crossref
  11. See more
Loading...

View Options

Get Access

Log in to view the full text

AAAS Log in

AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media