Advertisement

Abstract

Although gene expression can be regulated in a graded or a binary fashion, the majority of eukaryotic genes are either fully activated or not expressed at all in individual cells. This binary response might be an inherent property of many eukaryotic promoters. Analysis of transcription under the control of yeast GAL1 promoter suggests, however, that graded and binary modes of transcription are not mutually exclusive, but that both can occur at the same promoter when the activity of different signaling pathways is varied. In view of that, it can be expected that forthcoming experimental studies on the combinatorial effects of signaling and transcriptional mechanisms will reveal new strategies for generating graded or binary responses.

Get full access to this article

View all available purchase options and get full access to this article.

Already a subscriber or AAAS Member?

References

1.
S. Fiering, E. Whitelaw, D. I. Martin, To be or not to be active: The stochastic nature of enhancer action. Bioessays 22, 381-387 (2000).
2.
D. A. Hume, Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96, 2323-2328 (2000).
3.
M. S. Ko, H. Nakauchi, N. Takahashi, The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J. 9, 2835-2842 (1990).
4.
S. R. Biggar, G. R. Crabtree, Cell signaling can direct either binary or graded transcriptional responses. EMBO J. 20, 3167-3176 (2001).
5.
A. M. Kringstein, F. M. Rossi, A. Hofmann, H. M. Blau, Graded transcriptional response to different concentrations of a single transactivator. Proc. Natl. Acad. Sci. U.S.A. 95, 13670-13675 (1998).
6.
A. D. Keller, Model genetic circuits encoding autoregulatory transcription factors. J. Theor. Biol. 172, 169-185 (1995).
7.
M. Carey, The enhanceosome and transcriptional synergy. Cell 92, 5-8 (1998).
8.
E. Giniger, M. Ptashne, Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc. Natl. Acad. Sci. U.S.A. 85, 382-386 (1988).
9.
A. Becskei, B. Seraphin, L. Serrano, Positive feedback in eukaryotic gene networks: Cell differentiation by graded to binary response conversion. EMBO J. 20, 2528-2535 (2001).
10.
J. E. Ferrell Jr., E. M. Machleder, The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280, 895-898 (1998).
11.
M. A. Poritz, S. Malmstrom, M. K. Kim, P. J. Rossmeissl, A. Kamb, Graded mode of transcriptional induction in yeast pheromone signalling revealed by single-cell analysis. Yeast 18, 1331-1338 (2001).
12.
C. Y. Huang, J. E. Ferrell Jr., Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. U.S.A. 93, 10078-10083 (1996).
13.
J. E. Ferrell Jr., Tripping the switch fantastic: How a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem. Sci. 21, 460-466 (1996).
14.
F. M. Rossi, A. M. Kringstein, A. Spicher, O. M. Guicherit, H. M. Blau, Transcriptional control: Rheostat converted to on/off switch. Mol. Cell 6, 723-728 (2000).
15.
H. H. McAdams, A. Arkin, Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. U.S.A. 94, 814-819 (1997).
16.
E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, A. van Oudenaarden, Regulation of noise in the expression of a single gene. Nature Genet. 31, 69-73 (2002).
17.
O. G. Berg, J. Paulsson, M. Ehrenberg, Fluctuations and quality of control in biological cells: Zero-order ultrasensitivity reinvestigated. Biophys. J. 79, 1228-1236 (2000).
18.
J. Paulsson, O. G. Berg, M. Ehrenberg, Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. U.S.A. 97, 7148-7153 (2000).
19.
M. Thattai, A. van Oudenaarden, Attenuation of noise in ultrasensitive signaling cascades. Biophys. J. 82, 2943-2950 (2002).
20.
R. J. Reece, A. Platt, Signaling activation and repression of RNA polymerase II transcription in yeast. Bioessays 19, 1001-1010 (1997).

Information & Authors

Information

Published In

Science's STKE
Volume 2002 | Issue 143
July 2002

Permissions

See the Reprints and Permissions page for information about permissions for this article.

Authors

Affiliations

Matthieu Louis
EMBL-EBI, Structural Genomics Group, Cambridge CB10 1SD, UK.
Attila Becskei
EMBL, Gene Expression Programme, Heidelberg, Germany.

Notes

*Corresponding author. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Characterization of the regulatory 5′-flanking region of bovine mucin 2 (MUC2) gene, Molecular and Cellular Biochemistry, 476, 7, (2847-2856), (2021).https://doi.org/10.1007/s11010-021-04133-1
    Crossref
  2. Observation and Control of Gene Expression Noise: Barrier Crossing Analogies Between Drug Resistance and Metastasis, Frontiers in Genetics, 11, (2020).https://doi.org/10.3389/fgene.2020.586726
    Crossref
  3. Inference of Gene Regulatory Networks by Topological Prior Information and Data Integration, Biotechnology, (265-304), (2019).https://doi.org/10.4018/978-1-5225-8903-7
    Crossref
  4. Modeling Procedures, Modeling Methods for Medical Systems Biology, (35-134), (2018).https://doi.org/10.1007/978-3-319-89354-9_2
    Crossref
  5. Bridging the Data Gap From in vitro Toxicity Testing to Chemical Safety Assessment Through Computational Modeling, Frontiers in Public Health, 6, (2018).https://doi.org/10.3389/fpubh.2018.00261
    Crossref
  6. Inference of Gene Regulatory Networks by Topological Prior Information and Data Integration, Emerging Research in the Analysis and Modeling of Gene Regulatory Networks, (1-51), (2016).https://doi.org/10.4018/978-1-5225-0353-8.ch001
    Crossref
  7. Binary and graded evolution in time in a simple model of gene induction, Physical Review E, 82, 5, (2010).https://doi.org/10.1103/PhysRevE.82.052902
    Crossref
  8. Phenotypic impact of regulatory noise in cellular stress-response pathways, Systems and Synthetic Biology, 4, 2, (105-116), (2010).https://doi.org/10.1007/s11693-010-9055-2
    Crossref
  9. Free-energy distribution of binary protein-protein binding suggests cross-species interactome differences, Proceedings of the National Academy of Sciences, 103, 31, (11527-11532), (2006).https://doi.org/10.1073/pnas.0604316103
    Crossref
  10. Dose-Incidence Modeling: Consequences of Linking Quantal Measures of Response to Depletion of Critical Tissue Targets, Toxicological Sciences, 89, 1, (331-337), (2005).https://doi.org/10.1093/toxsci/kfj024
    Crossref
Loading...

View Options

Get Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media