Advertisement
No access
Research Article
CANCER

Antitumor activity without on-target off-tumor toxicity of GD2–chimeric antigen receptor T cells in patients with neuroblastoma

Karin Straathof https://orcid.org/0000-0001-9673-8568, Barry Flutter https://orcid.org/0000-0002-8084-6369, Rebecca Wallace, Neha Jain https://orcid.org/0000-0002-8499-3366, Thalia Loka https://orcid.org/0000-0002-3821-1060, Sarita Depani, Gary Wright, Simon Thomas https://orcid.org/0000-0003-3410-5698, Gordon Weng-Kit Cheung https://orcid.org/0000-0002-7016-1059, Talia Gileadi https://orcid.org/0000-0002-8155-6822, Sian Stafford https://orcid.org/0000-0002-4848-4230, Evangelia Kokalaki https://orcid.org/0000-0003-4686-6806, Jack Barton https://orcid.org/0000-0003-0167-2485, Clare Marriott, Dyanne Rampling https://orcid.org/0000-0003-3508-8404, Olumide Ogunbiyi https://orcid.org/0000-0001-5208-5526, Ayse U. Akarca, Teresa Marafioti https://orcid.org/0000-0003-1223-6275, Sarah Inglott, Kimberly Gilmour https://orcid.org/0000-0003-0285-3958, Muhammad Al-Hajj https://orcid.org/0000-0001-5423-0758, William Day, Kieran McHugh https://orcid.org/0000-0001-6891-5213, Lorenzo Biassoni https://orcid.org/0000-0002-5225-3996, Natalie Sizer https://orcid.org/0000-0001-5701-5885, Claire Barton, David Edwards, Ilaria Dragoni, Julie Silvester, Karen Dyer https://orcid.org/0000-0002-7837-5481, Stephanie Traub https://orcid.org/0000-0002-2704-4076, Lily Elson, Sue Brook, Nigel Westwood https://orcid.org/0000-0002-2839-9143, Lesley Robson https://orcid.org/0000-0002-7926-4839, Ami Bedi, Karen Howe https://orcid.org/0000-0003-2940-4802, Ailish Barry, Catriona Duncan https://orcid.org/0000-0002-9496-4745, Giuseppe Barone https://orcid.org/0000-0003-3264-1913, Martin Pule https://orcid.org/0000-0002-8347-9867 [email protected], and John Anderson https://orcid.org/0000-0001-7509-3203 [email protected]Authors Info & Affiliations
Science Translational Medicine
25 Nov 2020
Vol 12, Issue 571

CARs to drive off neuroblastoma

Neuroblastoma is one of the most common types of pediatric cancer, and it can be difficult to treat. This tumor typically has high expression of the ganglioside GD2, and there have been previous attempts at targeting these tumors via GD2. Unfortunately, these have not been entirely successful, in part, because some GD2 is also present on nonmalignant nervous tissue. Straathof et al. report the results of a clinical trial in 12 pediatric patients with neuroblastoma, treated with chimeric antigen receptor (CAR) T cells against GD2. The treatment was well tolerated without on-target off-tumor toxicity but did not achieve objective clinical responses.

Abstract

The reprogramming of a patient’s immune system through genetic modification of the T cell compartment with chimeric antigen receptors (CARs) has led to durable remissions in chemotherapy-refractory B cell cancers. Targeting of solid cancers by CAR-T cells is dependent on their infiltration and expansion within the tumor microenvironment, and thus far, fewer clinical responses have been reported. Here, we report a phase 1 study (NCT02761915) in which we treated 12 children with relapsed/refractory neuroblastoma with escalating doses of second-generation GD2-directed CAR-T cells and increasing intensity of preparative lymphodepletion. Overall, no patients had objective clinical response at the evaluation point +28 days after CAR-T cell infusion using standard radiological response criteria. However, of the six patients receiving ≥108/meter2 CAR-T cells after fludarabine/cyclophosphamide conditioning, two experienced grade 2 to 3 cytokine release syndrome, and three demonstrated regression of soft tissue and bone marrow disease. This clinical activity was achieved without on-target off-tumor toxicity. Targeting neuroblastoma with GD2 CAR-T cells appears to be a valid and safe strategy but requires further modification to promote CAR-T cell longevity.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Fig. S1. Generation of high-titer retroviral clone.
Fig. S2. Preclinical validation of 1RG-CART cell product.
Fig. S3. Recruitment and treatment on study.
Fig. S4. Count recovery after lymphodepletion and 1RG-CART administration.
Fig. S5. Assessment of response to 1RG-CART in bone marrow trephines for patient 25/010.
Fig. S6. Assessment of intensity scores in isolated regions of interest by normalization to liver uptake on 123I-mIBG scans before and after 1RG-CART.
Fig. S7. PD-L1 expression and T cell infiltration in tumor biopsies before and after 1RG-CART treatment.
Fig. S8. GD2 expression in tumor cells in bone marrow and biopsies after 1RG-CART.
Fig. S9. 1RG-CART cell product characteristics in patients with and without immune activation and antitumor activity.
Table S1. Eligibility criteria.
Table S2. Characteristics of patients recruited on study.
Table S3. 1RG-CART cell product dose and phenotype.
Table S4. Serum cytokine measurements.
Tables S5. Scoring of 123I-mIBG scans before and after 1RG-CART treatment.
Table S6. Scoring of PD-L1 expression in the tumor microenvironment before and after 1RG-CART treatment.
Table S7. GD2 expression in tumor samples at baseline and after 1RG-CART.

Resources

File (abd6169_sm.pdf)

REFERENCES AND NOTES

1
V. P. Tolbert, K. K. Matthay, Neuroblastoma: Clinical and biological approach to risk stratification and treatment. Cell Tissue Res. 372, 195–209 (2018).
2
R. Ladenstein, U. Pötschger, A. D. J. Pearson, P. Brock, R. Luksch, V. Castel, I. Yaniv, V. Papadakis, G. Laureys, J. Malis, W. Balwierz, E. Ruud, P. Kogner, H. Schroeder, A. F. de Lacerda, M. Beck-Popovic, P. Bician, M. Garami, T. Trahair, A. Canete, P. F. Ambros, K. Holmes, M. Gaze, G. Schreier, A. Garaventa, G. Vassal, J. Michon, D. Valteau-Couanet; SIOP Europe Neuroblastoma Group (SIOPEN), Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): An international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol. 18, 500–514 (2017).
3
J. R. Park, S. G. Kreissman, W. B. London, A. Naranjo, S. L. Cohn, M. D. Hogarty, S. C. Tenney, D. Haas-Kogan, P. J. Shaw, J. M. Kraveka, S. S. Roberts, J. D. Geiger, J. J. Doski, S. D. Voss, J. M. Maris, S. A. Grupp, L. Diller, Effect of tandem autologous stem cell transplant vs single transplant on event-free survival in patients with high-risk neuroblastoma: A randomized clinical trial. JAMA 322, 746–755 (2019).
4
F. Berthold, A. Faldum, A. Ernst, J. Boos, D. Dilloo, A. Eggert, M. Fischer, M. Frühwald, G. Henze, T. Klingebiel, C. Kratz, B. Kremens, B. Krug, I. Leuschner, M. Schmidt, R. Schmidt, R. Schumacher-Kuckelkorn, D. von Schweinitz, F. H. Schilling, J. Theissen, R. Volland, B. Hero, T. Simon, Extended induction chemotherapy does not improve the outcome for high-risk neuroblastoma patients: Results of the randomized open-label GPOH trial NB2004-HR. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 31, 422–429 (2020).
5
G. Lammie, N. Cheung, W. Gerald, M. Rosenblum, C. Cordoncardo, Ganglioside gd(2) expression in the human nervous-system and in neuroblastomas—An immunohistochemical study. Int. J. Oncol. 3, 909–915 (1993).
6
M. Suzuki, N.-K. V. Cheung, Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin. Ther. Targets 19, 349–362 (2015).
7
A. L. Yu, A. L. Gilman, M. F. Ozkaynak, W. B. London, S. G. Kreissman, H. X. Chen, M. Smith, B. Anderson, J. G. Villablanca, K. K. Matthay, H. Shimada, S. A. Grupp, R. Seeger, C. P. Reynolds, A. Buxton, R. A. Reisfeld, S. D. Gillies, S. L. Cohn, J. M. Maris, P. M. Sondel; Children’s Oncology Group, Anti-GD2 antibody with gm-csf, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363, 1324–1334 (2010).
8
R. Ladenstein, U. Pötschger, D. Valteau-Couanet, R. Luksch, V. Castel, I. Yaniv, G. Laureys, P. Brock, J. M. Michon, C. Owens, T. Trahair, G. C. F. Chan, E. Ruud, H. Schroeder, M. B. Popovic, G. Schreier, H. Loibner, P. Ambros, K. Holmes, M. R. Castellani, M. N. Gaze, A. Garaventa, A. D. J. Pearson, H. N. Lode, Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): A multicentre, randomised, phase 3 trial. Lancet Oncol. 19, 1617–1629 (2018).
9
M. F. Ozkaynak, A. L. Gilman, W. B. London, A. Naranjo, M. B. Diccianni, S. C. Tenney, M. Smith, K. S. Messer, R. Seeger, C. P. Reynolds, L. M. Smith, B. L. Shulkin, M. Parisi, J. M. Maris, J. R. Park, P. M. Sondel, A. L. Yu, A comprehensive safety trial of chimeric antibody 14.18 with GM-CSF, IL-2, and isotretinoin in high-risk neuroblastoma patients following myeloablative therapy: Children’s oncology group study ANBL0931. Front. Immunol. 9, 1355 (2018).
10
M. A. Pule, B. Savoldo, G. D. Myers, C. Rossig, H. V. Russell, G. Dotti, M. H. Huls, E. Liu, A. P. Gee, Z. Mei, E. Yvon, H. L. Weiss, H. Liu, C. M. Rooney, H. E. Heslop, M. K. Brenner, Virus-specific T cells engineered to coexpress tumor-specific receptors: Persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).
11
C. U. Louis, B. Savoldo, G. Dotti, M. Pule, E. Yvon, G. D. Myers, C. Rossig, H. V. Russell, O. Diouf, E. Liu, H. Liu, M.-F. Wu, A. P. Gee, Z. Mei, C. M. Rooney, H. E. Heslop, M. K. Brenner, Antitumor activity and long-term fate of chimeric antigen receptor–positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).
12
A. Heczey, C. U. Louis, B. Savoldo, O. Dakhova, A. Durett, B. Grilley, H. Liu, M. F. Wu, Z. Mei, A. Gee, B. Mehta, H. Zhang, N. Mahmood, H. Tashiro, H. E. Heslop, G. Dotti, C. M. Rooney, M. K. Brenner, CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 25, 2214–2224 (2017).
13
S. Thomas, K. Straathof, N. Himoudi, J. Anderson, M. Pule, An optimized GD2-targeting retroviral cassette for more potent and safer cellular therapy of neuroblastoma and other cancers. PLOS ONE 11, e0152196 (2016).
14
K. Nakamura, Y. Tanaka, K. Shitara, N. Hanai, Construction of humanized anti-ganglioside monoclonal antibodies with potent immune effector functions. Cancer Immunol. Immunother. 50, 275–284 (2001).
15
A. Hombach, A. A. Hombach, H. Abken, Adoptive immunotherapy with genetically engineered T cells: Modification of the IgG1 Fc “spacer” domain in the extracellular moiety of chimeric antigen receptors avoids “off-target” activation and unintended initiation of an innate immune response. Gene Ther. 17, 1206–1213 (2010).
16
B. Philip, E. Kokalaki, L. Mekkaoui, S. Thomas, K. Straathof, B. Flutter, V. Marin, T. Marafioti, R. Chakraverty, D. Linch, S. A. Quezada, K. S. Peggs, M. Pule, A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124, 1277–1287 (2014).
17
C. J. Turtle, L.-A. Hanafi, C. Berger, T. A. Gooley, S. Cherian, M. Hudecek, D. Sommermeyer, K. Melville, B. Pender, T. M. Budiarto, E. Robinson, N. N. Steevens, C. Chaney, L. Soma, X. Chen, C. Yeung, B. Wood, D. Li, J. Cao, S. Heimfeld, M. C. Jensen, S. R. Riddell, D. G. Maloney, CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).
18
E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, J. Verweij, New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).
19
L. Seymour, J. Bogaerts, A. Perrone, R. Ford, L. H. Schwartz, S. Mandrekar, N. U. Lin, S. Litière, J. Dancey, A. Chen, F. S. Hodi, P. Therasse, O. S. Hoekstra, L. K. Shankar, J. D. Wolchok, M. Ballinger, C. Caramella, E. G. E. de Vries; RECIST working group, iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).
20
K. K. Matthay, B. Shulkin, R. Ladenstein, J. Michon, F. Giammarile, V. Lewington, A. D. J. Pearson, S. L. Cohn, Criteria for evaluation of disease extent by 123I-metaiodobenzylguanidine scans in neuroblastoma: A report for the International Neuroblastoma Risk Group (INRG) task force. Br. J. Cancer 102, 1319–1326 (2010).
21
W. P. Fendler, H. I. Melzer, C. Walz, D. von Schweinitz, E. Coppenrath, I. Schmid, P. Bartenstein, T. Pfluger, High 123I-MIBG uptake in neuroblastic tumours indicates unfavourable histopathology. Eur. J. Nucl. Med. Mol. Imaging 40, 1701–1710 (2013).
22
W. P. Fendler, V. Wenter, H. I. Thornton, H. Ilhan, D. von Schweinitz, E. Coppenrath, I. Schmid, P. Bartenstein, T. Pfluger, Combined scintigraphy and tumor marker analysis predicts unfavorable histopathology of neuroblastic tumors with high accuracy. PLOS ONE 10, e0132809 (2015).
23
J. R. Park, R. Bagatell, S. L. Cohn, A. D. Pearson, J. G. Villablanca, F. Berthold, S. Burchill, A. Boubaker, K. McHugh, J. G. Nuchtern, W. B. London, N. L. Seibel, O. W. Lindwasser, J. M. Maris, P. Brock, G. Schleiermacher, R. Ladenstein, K. K. Matthay, D. Valteau-Couanet, Revisions to the international neuroblastoma response criteria: A consensus statement from the national cancer institute clinical trials planning meeting. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 35, 2580–2587 (2017).
24
S. S. Neelapu, S. Tummala, P. Kebriaei, W. Wierda, C. Gutierrez, F. L. Locke, K. V. Komanduri, Y. Lin, N. Jain, N. Daver, J. Westin, A. M. Gulbis, M. E. Loghin, J. F. de Groot, S. Adkins, S. E. Davis, K. Rezvani, P. Hwu, E. J. Shpall, Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).
25
U. Mock, L. Nickolay, B. Philip, G. W.-K. Cheung, H. Zhan, I. C. D. Johnston, A. D. Kaiser, K. Peggs, M. Pule, A. J. Thrasher, W. Qasim, Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy. Cytotherapy 18, 1002–1011 (2016).
26
S. Depil, P. Duchateau, S. A. Grupp, G. Mufti, L. Poirot, “Off-the-shelf” allogeneic CAR T cells: Development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).
27
S. L. Maude, T. W. Laetsch, J. Buechner, S. Rives, M. Boyer, H. Bittencourt, P. Bader, M. R. Verneris, H. E. Stefanski, G. D. Myers, M. Qayed, B. D. Moerloose, H. Hiramatsu, K. Schlis, K. L. Davis, P. L. Martin, E. R. Nemecek, G. A. Yanik, C. Peters, A. Baruchel, N. Boissel, F. Mechinaud, A. Balduzzi, J. Krueger, C. H. June, B. L. Levine, P. Wood, T. Taran, M. Leung, K. T. Mueller, Y. Zhang, K. Sen, D. Lebwohl, M. A. Pulsipher, S. A. Grupp, Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).
28
S. Ghorashian, A. M. Kramer, S. Onuoha, G. Wright, J. Bartram, R. Richardson, S. J. Albon, J. Casanovas-Company, F. Castro, B. Popova, K. Villanueva, J. Yeung, W. Vetharoy, A. Guvenel, P. A. Wawrzyniecka, L. Mekkaoui, G. W.-K. Cheung, D. Pinner, J. Chu, G. Lucchini, J. Silva, O. Ciocarlie, A. Lazareva, S. Inglott, K. C. Gilmour, G. Ahsan, M. Ferrari, S. Manzoor, K. Champion, T. Brooks, A. Lopes, A. Hackshaw, F. Farzaneh, R. Chiesa, K. Rao, D. Bonney, S. Samarasinghe, N. Goulden, A. Vora, P. Veys, R. Hough, R. Wynn, M. A. Pule, P. J. Amrolia, Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019).
29
A. H. Long, W. M. Haso, J. F. Shern, K. M. Wanhainen, M. Murgai, M. Ingaramo, J. P. Smith, A. J. Walker, M. E. Kohler, V. R. Venkateshwara, R. N. Kaplan, G. H. Patterson, T. J. Fry, R. J. Orentas, C. L. Mackall, 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).
30
A. H. Long, S. L. Highfill, Y. Cui, J. P. Smith, A. J. Walker, S. Ramakrishna, R. El-Etriby, S. Galli, M. G. Tsokos, R. J. Orentas, C. L. Mackall, Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol. Res. 4, 869–880 (2016).
31
S. A. Richman, S. Nunez-Cruz, B. Moghimi, L. Z. Li, Z. T. Gershenson, Z. Mourelatos, D. M. Barrett, S. A. Grupp, M. C. Milone, High-affinity GD2-specific CAR T cells induce fatal encephalitis in a preclinical neuroblastoma model. Cancer Immunol. Res. 6, 36–46 (2018).
32
S. A. Richman, M. C. Milone, Neurotoxicity associated with a high-affinity GD2 CAR—Response. Cancer Immunol. Res. 6, 496–497 (2018).
33
R. G. Majzner, E. W. Weber, R. C. Lynn, P. Xu, C. L. Mackall, Neurotoxicity associated with a high-affinity GD2 CAR—Letter. Cancer Immunol. Res. 6, 494–495 (2018).
34
R. C. Lynn, E. W. Weber, E. Sotillo, D. Gennert, P. Xu, Z. Good, H. Anbunathan, J. Lattin, R. Jones, V. Tieu, S. Nagaraja, J. Granja, C. F. A. de Bourcy, R. Majzner, A. T. Satpathy, S. R. Quake, M. Monje, H. Y. Chang, C. L. Mackall, c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).
35
R. A. Morgan, N. Chinnasamy, D. Abate-Daga, A. Gros, P. F. Robbins, Z. Zheng, M. E. Dudley, S. A. Feldman, J. C. Yang, R. M. Sherry, G. Q. Phan, M. S. Hughes, U. S. Kammula, A. D. Miller, C. J. Hessman, A. A. Stewart, N. P. Restifo, M. M. Quezado, M. Alimchandani, A. Z. Rosenberg, A. Nath, T. Wang, B. Bielekova, S. C. Wuest, N. Akula, F. J. McMahon, S. Wilde, B. Mosetter, D. J. Schendel, C. M. Laurencot, S. A. Rosenberg, Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).
36
R. G. Majzner, S. P. Rietberg, E. Sotillo, R. Dong, V. T. Vachharajani, L. Labanieh, J. H. Myklebust, M. Kadapakkam, E. W. Weber, A. M. Tousley, R. M. Richards, S. Heitzeneder, S. M. Nguyen, V. Wiebking, J. Theruvath, R. C. Lynn, P. Xu, A. R. Dunn, R. D. Vale, C. L. Mackall, Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov. 10, 702–723 (2020).
37
X. Liu, S. Jiang, C. Fang, S. Yang, D. Olalere, E. C. Pequignot, A. P. Cogdill, N. Li, M. Ramones, B. Granda, L. Zhou, A. Loew, R. M. Young, C. H. June, Y. Zhao, Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res. 75, 3596–3607 (2015).
38
L. Fultang, L. D. Gamble, L. Gneo, A. M. Berry, S. A. Egan, F. De Bie, O. Yogev, G. L. Eden, S. Booth, S. Brownhill, A. Vardon, C. M. McConville, P. N. Cheng, M. D. Norris, H. C. Etchevers, J. Murray, D. S. Ziegler, L. Chesler, R. Schmidt, S. A. Burchill, M. Haber, C. De Santo, F. Mussai, Macrophage-derived IL1β and TNFα regulate arginine metabolism in neuroblastoma. Cancer Res. 79, 611–624 (2019).
39
R. A. Burga, E. Yvon, E. Chorvinsky, R. Fernandes, C. R. Y. Cruz, C. M. Bollard, Engineering the TGFβ receptor to enhance the therapeutic potential of natural killer cells as an immunotherapy for neuroblastoma. Clin. Cancer Res. 25, 4400–4412 (2019).
40
J. P. Layer, M. T. Kronmüller, T. Quast, D. van den Boorn-Konijnenberg, M. Effern, D. Hinze, K. Althoff, A. Schramm, F. Westermann, M. Peifer, G. Hartmann, T. Tüting, W. Kolanus, M. Fischer, J. Schulte, M. Hölzel, Amplification of N-Myc is associated with a T-cell-poor microenvironment in metastatic neuroblastoma restraining interferon pathway activity and chemokine expression. Onco. Targets. Ther. 6, e1320626 (2017).
41
Z. Zhang, S. Liu, B. Zhang, L. Qiao, Y. Zhang, Y. Zhang, T cell dysfunction and exhaustion in cancer. Front. Cell Dev. Biol. 8, 17 (2020).
42
C. U. Blank, W. N. Haining, W. Held, P. G. Hogan, A. Kallies, E. Lugli, R. C. Lynn, M. Philip, A. Rao, N. P. Restifo, A. Schietinger, T. N. Schumacher, P. L. Schwartzberg, A. H. Sharpe, D. E. Speiser, E. J. Wherry, B. A. Youngblood, D. Zehn, Defining “T cell exhaustion”. Nat. Rev. Immunol. 19, 665–674 (2019).
43
T. Gargett, C. K. Fraser, G. Dotti, E. S. Yvon, M. P. Brown, BRAF and MEK inhibition variably affect GD2-specific chimeric antigen receptor (CAR) T-cell function in vitro. J. Immunother. 38, 12–23 (2015).
44
S. J. C. van der Stegen, M. Hamieh, M. Sadelain, The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov. 14, 499–509 (2015).
45
E. J. Orlando, X. Han, C. Tribouley, P. A. Wood, R. J. Leary, M. Riester, J. E. Levine, M. Qayed, S. A. Grupp, M. Boyer, B. D. Moerloose, E. R. Nemecek, H. Bittencourt, H. Hiramatsu, J. Buechner, S. M. Davies, M. R. Verneris, K. Nguyen, J. L. Brogdon, H. Bitter, M. Morrissey, P. Pierog, S. Pantano, J. A. Engelman, W. Winckler, Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504 (2018).
46
T. J. Fry, N. N. Shah, R. J. Orentas, M. Stetler-Stevenson, C. M. Yuan, S. Ramakrishna, P. Wolters, S. Martin, C. Delbrook, B. Yates, H. Shalabi, T. J. Fountaine, J. F. Shern, R. G. Majzner, D. F. Stroncek, M. Sabatino, Y. Feng, D. S. Dimitrov, L. Zhang, S. Nguyen, H. Qin, B. Dropulic, D. W. Lee, C. L. Mackall, CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).
47
P. Braendstrup, B. L. Levine, M. Ruella, The long road to the first FDA-approved gene therapy: Chimeric antigen receptor T cells targeting CD19. Cytotherapy 22, 57–69 (2020).
48
T. Shum, B. Omer, H. Tashiro, R. L. Kruse, D. L. Wagner, K. Parikh, Z. Yi, T. Sauer, D. Liu, R. Parihar, P. Castillo, H. Liu, M. K. Brenner, L. S. Metelitsa, S. Gottschalk, C. M. Rooney, Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov. 7, 1238–1247 (2017).
49
H. Seo, J. Chen, E. González-Avalos, D. Samaniego-Castruita, A. Das, Y. H. Wang, I. F. López-Moyado, R. O. Georges, W. Zhang, A. Onodera, C.-J. Wu, L.-F. Lu, P. G. Hogan, A. Bhandoola, A. Rao, TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl. Acad. Sci. U.S.A. 116, 12410–12415 (2019).
50
J. Chen, I. F. López-Moyado, H. Seo, C.-W. J. Lio, L. J. Hempleman, T. Sekiya, A. Yoshimura, J. P. Scott-Browne, A. Rao, NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).
51
Q. Shan, S. Hu, X. Chen, D. B. Danahy, V. P. Badovinac, C. Zang, H.-H. Xue, Ectopic Tcf1 expression instills a stem-like program in exhausted CD8+ T cells to enhance viral and tumor immunity. Cell. Mol. Immunol. 10.1038/s41423-020-0436-5, (2020).
52
C. M. Bollard, T. Tripic, C. R. Cruz, G. Dotti, S. Gottschalk, V. Torrano, O. Dakhova, G. Carrum, C. A. Ramos, H. Liu, M.-F. Wu, A. N. Marcogliese, C. Barese, Y. Zu, D. Y. Lee, O. O’Connor, A. P. Gee, M. K. Brenner, H. E. Heslop, C. M. Rooney, Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed hodgkin lymphoma. J. Clin. Oncol. 36, 1128–1139 (2018).
53
L. Cherkassky, A. Morello, J. Villena-Vargas, Y. Feng, D. S. Dimitrov, D. R. Jones, M. Sadelain, P. S. Adusumilli, Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).
54
J. Ren, X. Liu, C. Fang, S. Jiang, C. H. June, Y. Zhao, Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).
55
J. M. Skolnik, J. S. Barrett, B. Jayaraman, D. Patel, P. C. Adamson, Shortening the timeline of pediatric phase I trials: The rolling six design. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 26, 190–195 (2008).
56
D. W. Lee, R. Gardner, D. L. Porter, C. U. Louis, N. Ahmed, M. Jensen, S. A. Grupp, C. L. Mackall, Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014).
57
M. L. Donnelly, L. E. Hughes, G. Luke, H. Mendoza, E. ten Dam, D. Gani, M. D. Ryan, The “cleavage” activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring “2A-like” sequences. J. Gen. Virol. 82, 1027–1041 (2001).
58
I. Rivière, K. Brose, R. C. Mulligan, Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc. Natl. Acad. Sci. U.S.A. 92, 6733–6737 (1995).
59
T. Marafioti, M. Jones, F. Facchetti, T. C. Diss, M.-Q. Du, P. G. Isaacson, M. Pozzobon, S. A. Pileri, A. J. Strickson, S.-Y. Tan, F. Watkins, D. Y. Mason, Phenotype and genotype of interfollicular large B cells, a subpopulation of lymphocytes often with dendritic morphology. Blood 102, 2868–2876 (2003).
60
D. W. Lee, B. D. Santomasso, F. L. Locke, A. Ghobadi, C. J. Turtle, J. N. Brudno, M. V. Maus, J. H. Park, E. Mead, S. Pavletic, W. Y. Go, L. Eldjerou, R. A. Gardner, N. Frey, K. J. Curran, K. Peggs, M. Pasquini, J. F. DiPersio, M. R. M. van den Brink, K. V. Komanduri, S. A. Grupp, S. S. Neelapu, ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 25, 625–638 (2019).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science Translational Medicine
Volume 12 | Issue 571
November 2020

Submission history

Received: 7 July 2020
Accepted: 23 September 2020

Permissions

Request permissions for this article.

Acknowledgments

We thank the parents and children who participated in this study, the clinical and manufacturing teams, and staff in the hematology and immunology laboratories at Great Ormond Street Hospital. We thank BioVec Pharma for supplying the packaging lines. Funding: This work was funded and sponsored by Cancer Research UK (CRUK). Additional funding sources are Action Medical Research, Neuroblastoma UK and Great Ormond Street Hospital Charity (Anstey fund), Children with Cancer UK, and Research into Childhood Cancer (RICC). Clinical trial work at GOSH is supported by the NIHR/CRUK Experimental Cancer Medicine Centre (ECMC) funding. This work is partly funded by the NIHR GOSH BRC. The original preclinical work was funded by Neuroblastoma UK. K.S. is the recipient of a Wellcome Trust Clinician Scientist Fellowship. M.P. is supported by the University College London Hospital BRC. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. Author contributions: K.S., M.P., and J.A. designed and led the study and wrote the manuscript. M.P. generated the high-titer producer clone. B.F., R.W., S.S., T.G., S.T., G.W.-K.C., N.W., and J.S. led product development and manufacture. J.A., K.S., M.P., D.E., C.B., N.W., J.S., L.R., L.E., S.B., and K.D. managed the trial and regulatory submission. K.S., B.F., R.W., S.T., N.J., J.B., K.G., E.K., C.M., G.W.-K.C., S.I., G.W., D.R., A.U.A., O.O., T.M., M.A.-H., and W.D. generated and analyzed the data. J.A., G.B., C.D., T.L., N.J., S.D., A. Bedi, K.H., and A. Barry consented and managed the patients and collected the clinical data. K.S., T.L., N.J., K.M., L.B., N.S., C.B., D.E., L.R., J.S., S.T., L.E., S.B., and I.D. analyzed the clinical and laboratory data. Competing interests: M.P. receives a salary contribution from Autolus Ltd. S.T., M.A.-H., W.D., and E.K. are employees of Autolus Ltd. M.P., S.T., M.A-H., W.D., E.K., and J.A. own stock in Autolus Ltd. M.P., S.T., and J.A. are inventors on a patent describing the GD2-CAR (WO2015132604). M.P. is an inventor on a patent describing RQR8 (WO2013153391). C.B. is a freelance pharmaceutical physician; has undertaken paid consultancy work with Barton Oncology Ltd. for numerous companies, charitable groups, and other organizations; and owns shares in GlaxoSmithKline. All other authors declare that they have no competing interests. Data and materials availability: All data associated with this study are present in the paper or the Supplementary Materials. Plasmid encoding RQR8_2A_GD2-CAR (MP10413) is available from M.P. under a material transfer agreement with UCL.

Authors

Affiliations

Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Rebecca Wallace
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Sarita Depani
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Gary Wright
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
UCL Cancer Institute, London WC1E 6DD, UK.
Autolus Ltd., London W12 7FP, UK.
UCL Cancer Institute, London WC1E 6DD, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK.
UCL Cancer Institute, London WC1E 6DD, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK.
Clare Marriott
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Ayse U. Akarca
UCL Cancer Institute, London WC1E 6DD, UK.
UCL Cancer Institute, London WC1E 6DD, UK.
Sarah Inglott
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Autolus Ltd., London W12 7FP, UK.
William Day
Autolus Ltd., London W12 7FP, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Claire Barton
Centre for Drug Development, Cancer Research UK, London E20 1JQ, UK.
David Edwards
Centre for Drug Development, Cancer Research UK, London E20 1JQ, UK.
Ilaria Dragoni
Centre for Drug Development, Cancer Research UK, London E20 1JQ, UK.
Julie Silvester
Centre for Drug Development, Cancer Research UK, London E20 1JQ, UK.
Centre for Drug Development, Cancer Research UK, London E20 1JQ, UK.
Centre for Drug Development, Cancer Research UK, London E20 1JQ, UK.
Lily Elson
Centre for Drug Development, Cancer Research UK, London E20 1JQ, UK.
Sue Brook
Centre for Drug Development, Cancer Research UK, London E20 1JQ, UK.
Centre for Drug Development, Cancer Research UK, London E20 1JQ, UK.
Centre for Drug Development, Cancer Research UK, London E20 1JQ, UK.
Ami Bedi
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Ailish Barry
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK.
Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.

Funding Information

Wellcome: 102803/Z/13/Z
Cancer Research UK: Trial, manufacturer and pharmacodynamic assay agreements
Research in Childhood Cancer (RICC): One off donation
NIHR Great Ormond Street Biomedical Research Centre: N/A

Notes

*
Corresponding author. Email: [email protected] (M.P.); [email protected] (J.A.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. CAR-T cells and BiTEs in solid tumors: challenges and perspectives, Journal of Hematology & Oncology, 14, 1, (2021).https://doi.org/10.1186/s13045-021-01067-5
    Crossref
  2. Systems glycobiology for discovering drug targets, biomarkers, and rational designs for glyco-immunotherapy, Journal of Biomedical Science, 28, 1, (2021).https://doi.org/10.1186/s12929-021-00746-2
    Crossref
  3. How Do We Meet the Challenge of Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors?, The Cancer Journal, 27, 2, (134-142), (2021).https://doi.org/10.1097/PPO.0000000000000516
    Crossref
  4. The glycosphingolipid GD2 as an effective but enigmatic target of passive immunotherapy in children with aggressive neuroblastoma (HR-NBL), Cancer Letters, 503, (220-230), (2021).https://doi.org/10.1016/j.canlet.2020.11.044
    Crossref
  5. Cell Fate Reprogramming in the Era of Cancer Immunotherapy, Frontiers in Immunology, 12, (2021).https://doi.org/10.3389/fimmu.2021.714822
    Crossref
  6. Novel Treatments and Technologies Applied to the Cure of Neuroblastoma, Children, 8, 6, (482), (2021).https://doi.org/10.3390/children8060482
    Crossref
  7. Advances in Pharmacotherapy for Neuroblastoma, Expert Opinion on Pharmacotherapy, (2021).https://doi.org/10.1080/14656566.2021.1953470
    Crossref
  8. Surface expression of the immunotherapeutic target G D2 in osteosarcoma depends on cell confluency , Cancer Reports, (2021).https://doi.org/10.1002/cnr2.1394
    Crossref
  9. A Novel Treatment for Ewing’s Sarcoma: Chimeric Antigen Receptor-T Cell Therapy, Frontiers in Immunology, 12, (2021).https://doi.org/10.3389/fimmu.2021.707211
    Crossref
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media