Target 2HG or not 2HG, that is the question

Mutations in isocitrate dehydrogenase 1 and 2, which result in overproduction of 2-hydroxyglutarate (2HG), are observed in multiple tumor types, including gliomas and acute myelogenous leukemia. An additional form of 2HG is produced under hypoxia, which is also frequent in tumors. 2HG is considered to be an oncometabolite, or a metabolite that promotes carcinogenesis, and inhibitors of mutant isocitrate dehydrogenase are in development to target this process. However, Sulkowski et al. found that it may be possible to take advantage of 2HG overproduction instead. The authors discovered that 2HG overproduction impairs homologous recombination used in DNA repair and sensitizes cancer cells to treatment with PARP inhibitors, another class of cancer drugs that are already in clinical use.


2-Hydroxyglutarate (2HG) exists as two enantiomers, (R)-2HG and (S)-2HG, and both are implicated in tumor progression via their inhibitory effects on α-ketoglutarate (αKG)–dependent dioxygenases. The former is an oncometabolite that is induced by the neomorphic activity conferred by isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations, whereas the latter is produced under pathologic processes such as hypoxia. We report that IDH1/2 mutations induce a homologous recombination (HR) defect that renders tumor cells exquisitely sensitive to poly(adenosine 5′-diphosphate–ribose) polymerase (PARP) inhibitors. This “BRCAness” phenotype of IDH mutant cells can be completely reversed by treatment with small-molecule inhibitors of the mutant IDH1 enzyme, and conversely, it can be entirely recapitulated by treatment with either of the 2HG enantiomers in cells with intact IDH1/2 proteins. We demonstrate mutant IDH1–dependent PARP inhibitor sensitivity in a range of clinically relevant models, including primary patient-derived glioma cells in culture and genetically matched tumor xenografts in vivo. These findings provide the basis for a possible therapeutic strategy exploiting the biological consequences of mutant IDH, rather than attempting to block 2HG production, by targeting the 2HG-dependent HR deficiency with PARP inhibition. Furthermore, our results uncover an unexpected link between oncometabolites, altered DNA repair, and genetic instability.

Get full access to this article

View all available purchase options and get full access to this article.

Already a subscriber or AAAS Member? Log In

Supplementary Material


Materials and Methods
Fig. S1. Establishment and characterization of IDH mutant and WT cell models.
Fig. S2. Characterization of the DNA DSB repair defect in IDH mutant cells.
Fig. S3. Cell growth and viability assays in response to DNA repair and DNA damage response inhibitors.
Fig. S4. Increased sensitivity of IDH mutant cells to PARP inhibitors alone and in combination with cisplatin.
Fig. S5. Additional characterization of the impact of 2HG on DNA DSB repair.
Fig. S6. Manipulation of IDH and L2HGDH by siRNAs and impact on DNA DSB repair.
Fig. S7. Rescue of 2HG-induced HR defect by αKG, role of KDM4A/B in DNA repair regulation by mutant IDH1, and lack of correlation with NAD+ concentration.
Fig. S8. Additional glioma cell and xenograft data.
Table S1. STR profile of IDH WT parental HeLa cells.
Table S2. STR profile of IDH1 R132H/+ HeLa cell subclone.
Table S3. List of siRNAs targeting αKG-dependent dioxygenases and selected DNA repair proteins.
Table S4. Surviving fraction of 50% values for clonogenic survival assays.
References (6471)


File (aal2463_sm.pdf)


D. W. Parsons, S. Jones, X. Zhang, J. C.-H. Lin, R. J. Leary, P. Angenendt, P. Mankoo, H. Carter, I.-M. Siu, G. L. Gallia, A. Olivi, R. McLendon, B. A. Rasheed, S. Keir, T. Nikolskaya, Y. Nikolsky, D. A. Busam, H. Tekleab, L. A. Diaz Jr, J. Hartigan, D. R. Smith, R. L. Strausberg, S. K. N. Marie, S. M. O. Shinjo, H. Yan, G. J. Riggins, D. D. Bigner, R. Karchin, N. Papadopoulos, G. Parmigiani, B. Vogelstein, V. E. Velculescu, K. W. Kinzler, An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).
E. R. Mardis, L. Ding, D. J. Dooling, D. E. Larson, M. D. McLellan, K. Chen, D. C. Koboldt, R. S. Fulton, K. D. Delehaunty, S. D. McGrath, L. A. Fulton, D. P. Locke, V. J. Magrini, R. M. Abbott, T. L. Vickery, J. S. Reed, J. S. Robinson, T. Wylie, S. M. Smith, L. Carmichael, J. M. Eldred, C. C. Harris, J. Walker, J. B. Peck, F. Du, A. F. Dukes, G. E. Sanderson, A. M. Brummett, E. Clark, J. F. McMichael, R. J. Meyer, J. K. Schindler, C. S. Pohl, J. W. Wallis, X. Shi, L. Lin, H. Schmidt, Y. Tang, C. Haipek, M. E. Wiechert, J. V. Ivy, J. Kalicki, G. Elliott, R. E. Ries, J. E. Payton, P. Westervelt, M. H. Tomasson, M. A. Watson, J. Baty, S. Heath, W. D. Shannon, R. Nagarajan, D. C. Link, M. J. Walter, T. A. Graubert, J. F. DiPersio, R. K. Wilson, T. J. Ley, Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).
H. Yan, D. W. Parsons, G. Jin, R. McLendon, B. A. Rasheed, W. Yuan, I. Kos, I. Batinic-Haberle, S. Jones, G. J. Riggins, H. Friedman, A. Friedman, D. Reardon, J. Herndon, K. W. Kinzler, V. E. Velculescu, B. Vogelstein, D. D. Bigner, IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009).
Y. Jiao, T. M. Pawlik, R. A. Anders, F. M. Selaru, M. M. Streppel, D. J. Lucas, N. Niknafs, V. B. Guthrie, A. Maitra, P. Argani, G. J. A. Offerhaus, J. C. Roa, L. R. Roberts, G. J. Gores, I. Popescu, S. T. Alexandrescu, S. Dima, M. Fassan, M. Simbolo, A. Mafficini, P. Capelli, R. T. Lawlor, A. Ruzzenente, A. Guglielmi, G. Tortora, F. de Braud, A. Scarpa, W. Jarnagin, D. Klimstra, R. Karchin, V. E. Velculescu, R. H. Hruban, B. Vogelstein, K. W. Kinzler, N. Papadopoulos, L. D. Wood, Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 45, 1470–1473 (2013).
M. Krauthammer, Y. Kong, B. H. Ha, P. Evans, A. Bacchiocchi, J. P. McCusker, E. Cheng, M. J. Davis, G. Goh, M. Choi, S. Ariyan, D. Narayan, K. Dutton-Regester, A. Capatana, E. C. Holman, M. Bosenberg, M. Sznol, H. M. Kluger, D. E. Brash, D. F. Stern, M. A. Materin, R. S. Lo, S. Mane, S. Ma, K. K. Kidd, N. K. Hayward, R. P. Lifton, J. Schlessinger, T. J. Boggon, R. Halaban, Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet. 44, 1006–1014 (2012).
M. F. Amary, K. Bacsi, F. Maggiani, S. Damato, D. Halai, F. Berisha, R. Pollock, P. O’Donnell, A. Grigoriadis, T. Diss, M. Eskandarpour, N. Presneau, P. C. W. Hogendoorn, A. Futreal, R. Tirabosco, A. M. Flanagan, IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J. Pathol. 224, 334–343 (2011).
O. Clark, K. Yen, I. K. Mellinghoff, Molecular pathways: Isocitrate dehydrogenase mutations in cancer. Clin. Cancer Res. 22, 1837–1842 (2016).
L. Dang, D. W. White, S. Gross, B. D. Bennett, M. A. Bittinger, E. M. Driggers, V. R. Fantin, H. G. Jang, S. Jin, M. C. Keenan, K. M. Marks, R. M. Prins, P. S. Ward, K. E. Yen, L. M. Liau, J. D. Rabinowitz, L. C. Cantley, C. B. Thompson, M. G. Vander Heiden, S. M. Su, Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465, 966 (2010).
J.-A. Losman, W. G. Kaelin Jr, What a difference a hydroxyl makes: Mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).
E.-H. Shim, C. B. Livi, D. Rakheja, J. Tan, D. Benson, V. Parekh, E.-Y. Kho, A. P. Ghosh, R. Kirkman, S. Velu, S. Dutta, B. Chenna, S. L. Rea, R. J. Mishur, Q. Li, T. L. Johnson-Pais, L. Guo, S. Bae, S. Wei, K. Block, S. Sudarshan, l-2-Hydroxyglutarate: An epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov. 4, 1290–1298 (2014).
A. M. Intlekofer, R. G. Dematteo, S. Venneti, L. W. S. Finley, C. Lu, A. R. Judkins, A. S. Rustenburg, P. B. Grinaway, J. D. Chodera, J. R. Cross, C. B. Thompson, Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab. 22, 304–311 (2015).
W. M. Oldham, C. B. Clish, Y. Yang, J. Loscalzo, Hypoxia-mediated increases in l-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab. 22, 291–303 (2015).
W. Xu, H. Yang, Y. Liu, Y. Yang, P. Wang, S.-H. Kim, S. Ito, C. Yang, P. Wang, M.-T. Xiao, L.-x. Liu, W.-q. Jiang, J. Liu, J.-y. Zhang, B. Wang, S. Frye, Y. Zhang, Y.-h. Xu, Q.-y. Lei, K.-L. Guan, S.-m. Zhao, Y. Xiong, Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).
A. Terunuma, N. Putluri, P. Mishra, E. A. Mathé, T. H. Dorsey, M. Yi, T. A. Wallace, H. J. Issaq, M. Zhou, J. K. Killian, H. S. Stevenson, E. D. Karoly, K. Chan, S. Samanta, D. Prieto, T. Y. T. Hsu, S. J. Kurley, V. Putluri, R. Sonavane, D. C. Edelman, J. Wulff, A. M. Starks, Y. Yang, R. A. Kittles, H. G. Yfantis, D. H. Lee, O. B. Ioffe, R. Schiff, R. M. Stephens, P. S. Meltzer, T. D. Veenstra, T. F. Westbrook, A. Sreekumar, S. Ambs, MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J. Clin. Invest. 124, 398–412 (2014).
K. Smolková, A. Dvořák, J. Zelenka, L. Vítek, P. Ježek, Reductive carboxylation and 2-hydroxyglutarate formation by wild-type IDH2 in breast carcinoma cells. Int. J. Biochem. Cell Biol. 65, 125–133 (2015).
D. Rohle, J. Popovici-Muller, N. Palaskas, S. Turcan, C. Grommes, C. Campos, J. Tsoi, O. Clark, B. Oldrini, E. Komisopoulou, K. Kunii, A. Pedraza, S. Schalm, L. Silverman, A. Miller, F. Wang, H. Yang, Y. Chen, A. Kernytsky, M. K. Rosenblum, W. Liu, S. A. Biller, S. M. Su, C. W. Brennan, T. A. Chan, T. G. Graeber, K. E. Yen, I. K. Mellinghoff, An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).
F. E. Bleeker, N. A. Atai, S. Lamba, A. Jonker, D. Rijkeboer, K. S. Bosch, W. Tigchelaar, D. Troost, W. P. Vandertop, A. Bardelli, C. J. F. Van Noorden, The prognostic IDH1R132 mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol. 119, 487–494 (2010).
R. J. Molenaar, D. Verbaan, S. Lamba, C. Zanon, J. W. M. Jeuken, S. H. E. Boots-Sprenger, P. Wesseling, T. J. M. Hulsebos, D. Troost, A. A. van Tilborg, S. Leenstra, W. P. Vandertop, A. Bardelli, C. J. F. van Noorden, F. E. Bleeker, The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro Oncol. 16, 1263–1273 (2014).
P. Wang, Q. Dong, C. Zhang, P.-F. Kuan, Y. Liu, W. R. Jeck, J. B. Andersen, W. Jiang, G. L. Savich, T.-X. Tan, J. T. Auman, J. M. Hoskins, A. D. Misher, C. D. Moser, S. M. Yourstone, J. W. Kim, K. Cibulskis, G. Getz, H. V. Hunt, S. S. Thorgeirsson, L. R. Roberts, D. Ye, K.-L. Guan, Y. Xiong, L.-X. Qin, D. Y. Chiang, Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene 32, 3091–3100 (2013).
A. N. Tran, A. Lai, S. Li, W. B. Pope, S. Teixeira, R. J. Harris, D. C. Woodworth, P. L. Nghiemphu, T. F. Cloughesy, B. M. Ellingson, Increased sensitivity to radiochemotherapy in IDH1 mutant glioblastoma as demonstrated by serial quantitative MR volumetry. Neuro Oncol. 16, 414–420 (2014).
J. G. Cairncross, M. Wang, R. B. Jenkins, E. G. Shaw, C. Giannini, D. G. Brachman, J. C. Buckner, K. L. Fink, L. Souhami, N. J. Laperriere, J. T. Huse, M. P. Mehta, W. J. Curran, Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH. J. Clin. Oncol. 32, 783–790 (2014).
S. P. Jackson, T. Helleday, Drugging DNA repair. Science 352, 1178–1179 (2016).
J. Balss, S. Pusch, A.-C. Beck, C. Herold-Mende, A. Krämer, C. Thiede, W. Buckel, C.-D. Langhans, J. G. Okun, A. von Deimling, Enzymatic assay for quantitative analysis of (d)-2-hydroxyglutarate. Acta Neuropathol. 124, 883–891 (2012).
K. Tateishi, H. Wakimoto, A. J. Iafrate, S. Tanaka, F. Loebel, N. Lelic, D. Wiederschain, O. Bedel, G. Deng, B. Zhang, T. He, X. Shi, R. E. Gerszten, Y. Zhang, J.-R. J. Yeh, W. T. Curry, D. Zhao, S. Sundaram, F. Nigim, M. V. A. Koerner, Q. Ho, D. E. Fisher, E. M. Roider, L. V. Kemeny, Y. Samuels, K. T. Flaherty, T. T. Batchelor, A. S. Chi, D. P. Cahill, Extreme vulnerability of IDH1 mutant cancers to NAD+ depletion. Cancer Cell 28, 773–784 (2015).
P. L. Olive, J. P. Banáth, The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 (2006).
B. L. Ruis, K. R. Fattah, E. A. Hendrickson, The catalytic subunit of DNA-dependent protein kinase regulates proliferation, telomere length, and genomic stability in human somatic cells. Mol. Cell. Biol. 28, 6182–6195 (2008).
I. Murfuni, G. Basile, S. Subramanyam, E. Malacaria, M. Bignami, M. Spies, A. Franchitto, P. Pichierri, Survival of the replication checkpoint deficient cells requires MUS81-RAD52 function. PLOS Genet. 9, e1003910 (2013).
J. R. Czochor, P. Sulkowski, P. M. Glazer, miR-155 overexpression promotes genomic instability by reducing high-fidelity polymerase delta expression and activating error-prone DSB repair. Mol. Cancer Res. 14, 363–373 (2016).
F. Fece de la Cruz, B. V. Gapp, S. M. B. Nijman, Synthetic lethal vulnerabilities of cancer. Annu. Rev. Pharmacol. Toxicol. 55, 513–531 (2015).
K. M. Foote, A. Lau, J. W. M. Nissink, Drugging ATR: Progress in the development of specific inhibitors for the treatment of cancer. Future Med. Chem. 7, 873–891 (2015).
A. G. Patel, J. N. Sarkaria, S. H. Kaufmann, Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc. Natl. Acad. Sci. U.S.A. 108, 3406–3411 (2011).
C. K. Donawho, Y. Luo, Y. Luo, T. D. Penning, J. L. Bauch, J. J. Bouska, V. D. Bontcheva-Diaz, B. F. Cox, T. L. DeWeese, L. E. Dillehay, D. C. Ferguson, N. S. Ghoreishi-Haack, D. R. Grimm, R. Guan, E. K. Han, R. R. Holley-Shanks, B. Hristov, K. B. Idler, K. Jarvis, E. F. Johnson, L. R. Kleinberg, V. Klinghofer, L. M. Lasko, X. Liu, K. C. Marsh, T. P. McGonigal, J. A. Meulbroek, A. M. Olson, J. P. Palma, L. E. Rodriguez, Y. Shi, J. A. Stavropoulos, A. C. Tsurutani, G.-D. Zhu, S. H. Rosenberg, V. L. Giranda, D. J. Frost, ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res. 13, 2728–2737 (2007).
U. Kortmann, J. N. McAlpine, H. Xue, J. Guan, G. Ha, S. Tully, S. Shafait, A. Lau, A. N. Cranston, M. J. O’Connor, D. G. Huntsman, Y. Wang, C. B. Gilks, Tumor growth inhibition by olaparib in BRCA2 germline-mutated patient-derived ovarian cancer tissue xenografts. Clin. Cancer Res. 17, 783–791 (2011).
J.-M. Lee, J. L. Hays, C. M. Annunziata, A. M. Noonan, L. Minasian, J. A. Zujewski, M. Yu, N. Gordon, J. Ji, T. M. Sissung, W. D. Figg, N. Azad, B. J. Wood, J. Doroshow, E. C. Kohn, Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J. Natl. Cancer Inst. 106, dju089 (2014).
A. M. Oza, D. Cibula, A. O. Benzaquen, C. Poole, R. H. J. Mathijssen, G. S. Sonke, N. Colombo, J. Špaček, P. Vuylsteke, H. Hirte, S. Mahner, M. Plante, B. Schmalfeldt, H. Mackay, J. Rowbottom, E. S. Lowe, B. Dougherty, J. C. Barrett, M. Friedlander, Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: A randomised phase 2 trial. Lancet Oncol. 16, 87–97 (2015).
G. Y. Di Veroli, C. Fornari, D. Wang, S. Mollard, J. L. Bramhall, F. M. Richards, D. I. Jodrell, Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32, 2866–2868 (2016).
A. J. Pierce, R. D. Johnson, L. H. Thompson, M. Jasin, XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13, 2633–2638 (1999).
E. Baader, G. Tschank, K. H. Baringhaus, H. Burghard, V. Günzler, Inhibition of prolyl 4-hydroxylase by oxalyl amino acid derivatives in vitro, in isolated microsomes and in embryonic chicken tissues. Biochem. J. 300 (Pt. 2), 525–530 (1994).
A. G. Goglia, R. Delsite, A. N. Luz, D. Shahbazian, A. F. Salem, R. K. Sundaram, J. Chiaravalli, P. J. Hendrikx, J. A. Wilshire, M. Jasin, H. M. Kluger, J. F. Glickman, S. N. Powell, R. S. Bindra, Identification of novel radiosensitizers in a high-throughput, cell-based screen for DSB repair inhibitors. Mol. Cancer Ther. 14, 326–342 (2015).
L.-Y. Wang, C.-L. Hung, Y.-R. Chen, J. C. Yang, J. Wang, M. Campbell, Y. Izumiya, H.-W. Chen, W.-C. Wang, D. K. Ann, H.-J. Kung, KDM4A coactivates E2F1 to regulate the PDK-dependent metabolic switch between mitochondrial oxidation and glycolysis. Cell Rep. 16, 3016–3027 (2016).
C.-H. Chu, L.-Y. Wang, K.-C. Hsu, C.-C. Chen, H.-H. Cheng, S.-M. Wang, C.-M. Wu, T.-J. Chen, L.-T. Li, R. Liu, C.-L. Hung, J.-M. Yang, H.-J. Kung, W.-C. Wang, KDM4B as a target for prostate cancer: Structural analysis and selective inhibition by a novel inhibitor. J. Med. Chem. 57, 5975–5985 (2014).
F. A. Mallette, F. Mattiroli, G. Cui, L. C. Young, M. J. Hendzel, G. Mer, T. K. Sixma, S. Richard, RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J. 31, 1865–1878 (2012).
L. C. Young, D. W. McDonald, M. J. Hendzel, Kdm4b histone demethylase is a DNA damage response protein and confers a survival advantage following γ-irradiation. J. Biol. Chem. 288, 21376–21388 (2013).
L. Li, A. C. Paz, B. A. Wilky, B. Johnson, K. Galoian, A. Rosenberg, G. Hu, G. Tinoco, O. Bodamer, J. C. Trent, Treatment with a small molecule mutant IDH1 inhibitor suppresses tumorigenic activity and decreases production of the oncometabolite 2-hydroxyglutarate in human chondrosarcoma cells. PLOS ONE 10, e0133813 (2015).
C. C. Alano, P. Garnier, W. Ying, Y. Higashi, T. M. Kauppinen, R. A. Swanson, NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J. Neurosci. 30, 2967–2978 (2010).
H.-Q. Ju, Z.-N. Zhuang, H. Li, T. Tian, Y.-X. Lu, X.-Q. Fan, H.-J. Zhou, H.-Y. Mo, H. Sheng, P. J. Chiao, R.-H. Xu, Regulation of the Nampt-mediated NAD salvage pathway and its therapeutic implications in pancreatic cancer. Cancer Lett. 379, 1–11 (2016).
H. Bai, A. S. Harmancı, E. Z. Erson-Omay, J. Li, S. Coşkun, M. Simon, B. Krischek, K. Özduman, S. B. Omay, E. A. Sorensen, Ş. Turcan, M. Bakırcığlu, G. Carrión-Grant, P. B. Murray, V. E. Clark, A. G. Ercan-Sencicek, J. Knight, L. Sencar, S. Altınok, L. D. Kaulen, B. Gülez, M. Timmer, J. Schramm, K. Mishra-Gorur, O. Henegariu, J. Moliterno, A. Louvi, T. A. Chan, S. L. Tannheimer, M. N. Pamir, A. O. Vortmeyer, K. Bilguvar, K. Yasuno, M. Günel, Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nat. Genet. 48, 59–66 (2016).
Y. Lu, A. Chu, M. S. Turker, P. M. Glazer, Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. Mol. Cell. Biol. 31, 3339–3350 (2011).
R. S. Bindra, P. M. Glazer, Basal repression of BRCA1 by multiple E2Fs and pocket proteins at adjacent E2F sites. Cancer Biol. Ther. 5, 1400–1407 (2006).
S. E. Scanlon, P. M. Glazer, Hypoxic stress facilitates acute activation and chronic downregulation of fanconi anemia proteins. Mol. Cancer Res. 12, 1016–1028 (2014).
J. Mondesir, C. Willekens, M. Touat, S. de Botton, IDH1 and IDH2 mutations as novel therapeutic targets: Current perspectives. J. Blood Med. 7, 171–180 (2016).
S. Babakoohi, R. G. Lapidus, R. Faramand, E. A. Sausville, A. Emadi, Comparative analysis of methods for detecting isocitrate dehydrogenase 1 and 2 mutations and their metabolic consequence, 2-hydroxyglutarate, in different neoplasms. Appl. Immunohistochem. Mol. Morphol. 10.1097/PAI.0000000000000342 (2016).
U. E. Emir, S. J. Larkin, N. de Pennington, N. Voets, P. Plaha, R. Stacey, K. Al-Qahtani, J. Mccullagh, C. J. Schofield, S. Clare, P. Jezzard, T. Cadoux-Hudson, O. Ansorge, Noninvasive quantification of 2-hydroxyglutarate in human gliomas with IDH1 and IDH2 mutations. Cancer Res. 76, 43–49 (2016).
A. J. Chalmers, A. Jackson, H. Swaisland, W. Stewart, S. E. R. Halford, L. R. Molife, D. R. Hargrave, A. McCormick, Results of stage 1 of the oparatic trial: A phase I study of olaparib in combination with temozolomide in patients with relapsed glioblastoma. J. Clin. Oncol. 32, abstract 2025 (2014).
J. M. Su, P. Thompson, A. Adesina, X.-N. Li, L. Kilburn, A. Onar-Thomas, M. Kocak, B. Chyla, E. McKeegan, K. E. Warren, S. Goldman, I. F. Pollack, M. Fouladi, A. Chen, V. Giranda, J. Boyett, L. Kun, S. M. Blaney, A phase I trial of veliparib (ABT-888) and temozolomide in children with recurrent CNS tumors: A pediatric brain tumor consortium report. Neuro. Oncol. 16, 1661–1668 (2014).
J. A. Muscal, P. A. Thompson, V. L. Giranda, B. D. Dayton, J. Bauch, T. Horton, L. McGuffey, J. G. Nuchtern, R. C. Dauser, B. W. Gibson, S. M. Blaney, J. M. Su, Plasma and cerebrospinal fluid pharmacokinetics of ABT-888 after oral administration in non-human primates. Cancer Chemother. Pharmacol. 65, 419–425 (2010).
S. Gross, R. Rahal, N. Stransky, C. Lengauer, K. P. Hoeflich, Targeting cancer with kinase inhibitors. J. Clin. Invest. 125, 1780–1789 (2015).
L. Dang, K. Yen, E. C. Attar, IDH mutations in cancer and progress toward development of targeted therapeutics. Ann. Oncol. 27, 599–608 (2016).
B. M. Gyori, G. Venkatachalam, P. S. Thiagarajan, D. Hsu, M.-V. Clement, OpenComet: An automated tool for comet assay image analysis. Redox Biol. 2, 457–465 (2014).
G. Chatterjee, J. Jimenez-Sainz, T. Presti, T. Nguyen, R. B. Jensen, Distinct binding of BRCA2 BRC repeats to RAD51 generates differential DNA damage sensitivity. Nucleic Acids Res. 44, 5256–5270 (2016).
J. Zhuang, J. Zhang, H. Willers, H. Wang, J. H. Chung, D. C. van Gent, D. E. Hallahan, S. N. Powell, F. Xia, Checkpoint kinase 2–mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining. Cancer Res. 66, 1401–1408 (2006).
G. C. Stachelek, E. Peterson-Roth, Y. Liu, R. J. Fernandez III, L. R. G. Pike, J. M. Qian, L. Abriola, D. Hoyer, W. Hungerford, J. Merkel, P. M. Glazer, YU238259 is a novel inhibitor of homology-dependent DNA repair that exhibits synthetic lethality and radiosensitization in repair-deficient tumors. Mol. Cancer Res. 13, 1389–1397 (2015).
R. S. Bindra, A. G. Goglia, M. Jasin, S. N. Powell, Development of an assay to measure mutagenic non-homologous end-joining repair activity in mammalian cells. Nucleic Acids Res. 41, e115 (2013).
K. Nakanishi, Y.-G. Yang, A. J. Pierce, T. Taniguchi, M. Digweed, A. D. D’Andrea, Z.-Q. Wang, M. Jasin, Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc. Natl. Acad. Sci. U.S.A. 102, 1110–1115 (2005).
W. Sakai, E. M. Swisher, C. Jacquemont, K. V. Chandramohan, F. J. Couch, S. P. Langdon, K. Wurz, J. Higgins, E. Villegas, T. Taniguchi, Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res. 69, 6381–6386 (2009).
B. K. Singleton, A. Priestley, H. Steingrimsdottir, D. Gell, T. Blunt, S. P. Jackson, A. R. Lehmann, P. A. Jeggo, Molecular and biochemical characterization of xrs mutants defective in Ku80. Mol. Cell. Biol. 17, 1264–1273 (1997).
S. M. Chan, D. Thomas, M. R. Corces-Zimmerman, S. Xavy, S. Rastogi, W.-J. Hong, F. Zhao, B. C. Medeiros, D. A. Tyvoll, R. Majeti, Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat. Med. 21, 178–184 (2015).
S. Turcan, D. Rohle, A. Goenka, L. A. Walsh, F. Fang, E. Yilmaz, C. Campos, A. W. M. Fabius, C. Lu, P. S. Ward, C. B. Thompson, A. Kaufman, O. Guryanova, R. Levine, A. Heguy, A. Viale, L. G. T. Morris, J. T. Huse, I. K. Mellinghoff, T. A. Chan, IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012).
C. A. Lewis, S. J. Parker, B. P. Fiske, D. McCloskey, D. Y. Gui, C. R. Green, N. I. Vokes, A. M. Feist, M. G. Vander Heiden, C. M. Metallo, Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55, 253–263 (2014).
Y. V. Surovtseva, V. Jairam, A. F. Salem, R. K. Sundaram, R. S. Bindra, S. B. Herzon, Characterization of cardiac glycoside natural products as potent inhibitors of DNA double-strand break repair by a whole-cell double immunofluorescence assay. J. Am. Chem. Soc. 138, 3844–3855 (2016).
G. M. I. Chowdhury, L. Jiang, D. L. Rothman, K. L. Behar, The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo. J. Cereb. Blood Flow Metab. 34, 1233–1242 (2014).

Information & Authors


Published In

Science Translational Medicine
Volume 9 | Issue 375
February 2017

Submission history

Received: 19 October 2016
Accepted: 23 December 2016


Request permissions for this article.


We thank A. von Deimling for providing us with the HGDH enzyme; T. Taniguchi for providing us with the PEO1, PEO4, and dPEO1 C4-2 cells; R. Majeti for the THP1 cells; and T. Chan for providing us with immortalized astrocytes. We apologize to those whose work we cannot list because of the reference limitations for a publication in this journal. Funding: This work was supported by the NIH (R01ES005775, R01CA168733, and R01 CA177719 to P.M.G.), by the American Cancer Society (research scholar grant to R.S.B.), and by the Connecticut Department of Public Health (RFP 2014-0135 to S.H.). N.D.R. is a Howard Hughes Medical Institute Medical Research Fellow. S.E.S. was supported by the NIH Medical Scientist Program Training grant T32GM007205 and NIH National Institute of General Medical Sciences training grant T32GM007223. The work on this paper used Metabolomics Core services supported by grant U24 DK097153 of NIH Common Funds Project to the University of Michigan. Author contributions: P.L.S. and C.D.C. contributed to the experiments, scientific hypotheses, data analysis, and compiling of the manuscript. N.D.R., S.E.S., K.R.P., Y.L., R.K.S, D.C.H., N.R.F., Y.S., K.M.-G., H.M.D.F., R.A.d.G., Y.V.S., and M.K. contributed to the experiments. M.G., H.B., and G.A.B. contributed to the data analysis. S.H., P.M.G., and R.S.B. designed the experiments. P.L.S., C.D.C., P.M.G., and R.S.B. wrote the manuscript. Competing interests: R.S.B. and P.M.G. are inventors on the U.S. patent application no. 62/344,678 submitted by Yale University, which covers compositions and methods for targeting and treating HR-deficient tumors. Data and materials availability: The in-house software written in MATLAB (MathWorks) is available for download by directly contacting R.A.d.G. ( For all other reagents and data requests, please contact R.S.B. ([email protected]).



Parker L. Sulkowski*
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
Christopher D. Corso*
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Nathaniel D. Robinson
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Susan E. Scanlon
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
Karin R. Purshouse
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Hanwen Bai
Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
Yanfeng Liu
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Ranjini K. Sundaram
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Denise C. Hegan
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Nathan R. Fons
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
Gregory A. Breuer
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
Yuanbin Song
Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
Ketu Mishra-Gorur
Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA.
Henk M. De Feyter
Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA.
Robin A. de Graaf
Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA.
Yulia V. Surovtseva
Yale Center for Molecular Discovery, West Haven, CT 06516, USA.
Maureen Kachman
Michigan Regional Comprehensive Metabolomics Resource Core, National Institute of Environmental Health Sciences (NIEHS) Children’s Health Exposure Analysis Resource for Metabolomics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
Stephanie Halene
Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
Murat Günel
Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520, USA.
Peter M. Glazer [email protected]
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
Ranjit S. Bindra [email protected]
Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.


These authors contributed equally to this work.
Corresponding author. Email: [email protected] (R.S.B.); [email protected] (P.M.G.)

Metrics & Citations


Article Usage


Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. A subset of PARP inhibitors induces lethal telomere fusion in ALT-dependent tumor cells, Science Translational Medicine, 13, 592, (2021)./doi/10.1126/scitranslmed.abc7211
  2. Eliminating hypoxic tumor cells improves response to PARP inhibitors in homologous recombination–deficient cancer models, Journal of Clinical Investigation, 131, 11, (2021).
  3. Investigational new drugs against glioblastoma, Glioblastoma Resistance to Chemotherapy: Molecular Mechanisms and Innovative Reversal Strategies, (31-77), (2021).
  4. Enrichment of branched chain amino acid transaminase 1 correlates with multiple biological processes and contributes to poor survival of IDH1 wild-type gliomas, Aging, 13, 3, (3645-3660), (2021).
  5. Molecularly Targeted Clinical Trials, Neurosurgery Clinics of North America, 32, 2, (191-210), (2021).
  6. The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies, Cell Metabolism, 33, 1, (33-50), (2021).
  7. Mutant IDH1 Enhances Temozolomide Sensitivity via Regulation of the ATM/CHK2 Pathway in Glioma, Cancer Research and Treatment, 53, 2, (367-377), (2021).
  8. IDH inhibitors in advanced cholangiocarcinoma: Another arrow in the quiver?, Cancer Treatment and Research Communications, 27, (100356), (2021).
  9. In vitro and in vivo analysis of metabolites involved in the TCA cycle and glutamine metabolism associated with cisplatin resistance in human lung cancer, Expert Review of Proteomics, 18, 3, (233-240), (2021).
  10. The Evolving Role of Targeted Therapies in Primary Central Nervous System Tumors, Advances in Oncology, 1, (203-212), (2021).
  11. See more

View Options

Get Access

Log in to view the full text


AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF







Share article link

Share on social media