Advertisement

A softer recovery after stroke

Passive assistance devices such as canes and braces are often used by people after stroke, but mobility remains limited for some patients. Awad et al. studied the effects of active assistance (delivery of supportive force) during walking in nine patients in the chronic phase of stroke recovery. A soft robotic exosuit worn on the partially paralyzed lower limb reduced interlimb propulsion asymmetry, increased ankle dorsiflexion, and reduced the energy required to walk when powered on during treadmill and overground walking tests. The exosuit could be adjusted to deliver supportive force during the early or late phase of the gait cycle depending on the patient’s needs. Although long-term therapeutic studies are necessary, the immediate improvement in walking performance observed using the powered exosuit makes this a promising approach for neurorehabilitation.

Abstract

Stroke-induced hemiparetic gait is characteristically slow and metabolically expensive. Passive assistive devices such as ankle-foot orthoses are often prescribed to increase function and independence after stroke; however, walking remains highly impaired despite—and perhaps because of—their use. We sought to determine whether a soft wearable robot (exosuit) designed to supplement the paretic limb’s residual ability to generate both forward propulsion and ground clearance could facilitate more normal walking after stroke. Exosuits transmit mechanical power generated by actuators to a wearer through the interaction of garment-like, functional textile anchors and cable-based transmissions. We evaluated the immediate effects of an exosuit actively assisting the paretic limb of individuals in the chronic phase of stroke recovery during treadmill and overground walking. Using controlled, treadmill-based biomechanical investigation, we demonstrate that exosuits can function in synchrony with a wearer’s paretic limb to facilitate an immediate 5.33 ± 0.91° increase in the paretic ankle’s swing phase dorsiflexion and 11 ± 3% increase in the paretic limb’s generation of forward propulsion (P < 0.05). These improvements in paretic limb function contributed to a 20 ± 4% reduction in forward propulsion interlimb asymmetry and a 10 ± 3% reduction in the energy cost of walking, which is equivalent to a 32 ± 9% reduction in the metabolic burden associated with poststroke walking. Relatively low assistance (~12% of biological torques) delivered with a lightweight and nonrestrictive exosuit was sufficient to facilitate more normal walking in ambulatory individuals after stroke. Future work will focus on understanding how exosuit-induced improvements in walking performance may be leveraged to improve mobility after stroke.

Get full access to this article

View all available purchase options and get full access to this article.

Already a subscriber or AAAS Member? Log In

Supplementary Material

Summary

Materials and Methods
Fig. S1. Effects of wearing a passive exosuit on poststroke propulsion and energy expenditure.
Table S1. Tethered exosuit ankle PF assistive forces.
Table S2. Additional individual subject-level data.
Video S1. Video demonstration of exosuit-assisted treadmill walking.

Resources

File (aai9084_sm.pdf)
File (aai9084_tables2.xlsx)
File (aai9084_videos1.mp4)

REFERENCES AND NOTES

1
P. S. Rodman, H. M. McHenry, Bioenergetics and the origin of hominid bipedalism. Am. J. Phys. Anthropol. 52, 103–106 (1980).
2
D. J. Farris, A. Hampton, M. D. Lewek, G. S. Sawicki, Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: From individual limbs to lower limb joints. J. Neuroeng. Rehabil. 12, 24 (2015).
3
S. J. Olney, C. Richards, Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture 4, 136–148 (1996).
4
C. L. Richards, F. Malouin, C. Dean, Gait in stroke: Assessment and rehabilitation. Clin. Geriatr. Med. 15, 833–855 (1999).
5
T. Kitago, J. W. Krakauer, Motor learning principles for neurorehabilitation. Handb. Clin. Neurol. 110, 93–103 (2013).
6
C. K. Balasubramanian, R. R. Neptune, S. A. Kautz, Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke. Gait Posture 29, 408–414 (2009).
7
J. A. Schrack, E. M. Simonsick, P. H. M. Chaves, L. Ferrucci, The role of energetic cost in the age-related slowing of gait speed. J. Am. Geriatr. Soc. 60, 1811–1816 (2012).
8
S. A. Combs, M. Van Puymbroeck, P. A. Altenburger, K. K. Miller, T. A. Dierks, A. A. Schmid, Is walking faster or walking farther more important to persons with chronic stroke? Disabil. Rehabil. 35, 860–867 (2013).
9
N. E. Mayo, S. Wood-Dauphinee, S. Ahmed, C. Gordon, J. Higgins, S. McEwen, N. Salbach, Disablement following stroke. Disabil. Rehabil. 21, 258–268 (1999).
10
D. Lloyd-Jones, R. J. Adams, T. M. Brown, M. Carnethon, S. Dai, G. De Simone, T. B. Ferguson, E. Ford, K. Furie, C. Gillespie, A. Go, K. Greenlund, N. Haase, S. Hailpern, P. M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lackland, L. Lisabeth, A. Marelli, M. M. McDermott, J. Meigs, D. Mozaffarian, M. Mussolino, G. Nichol, V. L. Roger, W. Rosamond, R. Sacco, P. Sorlie, R. Stafford, T. Thom, S. Wasserthiel-Smoller, N. D. Wong, J. Wylie-Rosett, Heart disease and stroke statistics—2010 update: A report from the American Heart Association. Circulation 121, e46–e215 (2010).
11
P. W. Duncan, K. J. Sullivan, A. L. Behrman, S. P. Azen, S. S. Wu, S. E. Nadeau, B. H. Dobkin, D. K. Rose, J. K. Tilson, S. Cen, S. K. HaydenLEAPS Investigative Team, Body-weight–supported treadmill rehabilitation after stroke. N. Engl. J. Med. 364, 2026–2036 (2011).
12
T. H. Cruz, M. D. Lewek, Y. Y. Dhaher, Biomechanical impairments and gait adaptations post-stroke: Multi-factorial associations. J. Biomech. 42, 1673–1677 (2009).
13
C. Moriello, L. Finch, N. E. Mayo, Relationship between muscle strength and functional walking capacity among people with stroke. J. Rehabil. Res. Dev. 48, 267–275 (2011).
14
G. Chen, C. Patten, D. H. Kothari, F. E. Zajac, Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 22, 51–56 (2005).
15
T. H. Cruz, Y. Y. Dhaher, Impact of ankle-foot-orthosis on frontal plane behaviors post-stroke. Gait Posture 30, 312–316 (2009).
16
D. C. Kerrigan, E. P. Frates, S. Rogan, P. O. Riley, Hip hiking and circumduction: Quantitative definitions. Am. J. Phys. Med. Rehabil. 79, 247–252 (2000).
17
S. Schmid, K. Schweizer, J. Romkes, S. Lorenzetti, R. Brunner, Secondary gait deviations in patients with and without neurological involvement: A systematic review. Gait Posture 37, 480–493 (2013).
18
T. Susko, K. Swaminathan, H. I. Krebs, MIT-Skywalker: A novel gait neurorehabilitation robot for stroke and cerebral palsy. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 1089–1099 (2016).
19
S. A. Combs, E. L. Dugan, E. N. Ozimek, A. B. Curtis, Effects of body-weight supported treadmill training on kinetic symmetry in persons with chronic stroke. Clin. Biomech. 27, 887–892 (2012).
20
A. L. Hall, M. G. Bowden, S. A. Kautz, R. R. Neptune, Biomechanical variables related to walking performance 6-months following post-stroke rehabilitation. Clin. Biomech. 27, 1017–1022 (2012).
21
M. G. Bowden, A. L. Behrman, R. R. Neptune, C. M. Gregory, S. A. Kautz, Locomotor rehabilitation of individuals with chronic stroke: Difference between responders and nonresponders. Arch. Phys. Med. Rehabil. 94, 856–862 (2013).
22
D. S. Reisman, K. S. Rudolph, W. B. Farquhar, Influence of speed on walking economy poststroke. Neurorehabil. Neural Repair 23, 529–534 (2009).
23
C. K. Balasubramanian, M. G. Bowden, R. R. Neptune, S. A. Kautz, Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch. Phys. Med. Rehabil. 88, 43–49 (2007).
24
C. English, P. J. Manns, C. Tucak, J. Bernhardt, Physical activity and sedentary behaviors in people with stroke living in the community: A systematic review. Phys. Ther. 94, 185–196 (2014).
25
K. M. Michael, J. K. Allen, R. F. Macko, Reduced ambulatory activity after stroke: The role of balance, gait, and cardiovascular fitness. Arch. Phys. Med. Rehabil. 86, 1552–1556 (2005).
26
P. H. Lee, H. Nan, Y.-Y. Yu, I. McDowell, G. M. Leung, T. H. Lam, For non-exercising people, the number of steps walked is more strongly associated with health than time spent walking. J. Sci. Med. Sport 16, 227–230 (2013).
27
D. Rand, J. J. Eng, P.-F. Tang, C. Hung, J.-S. Jeng, Daily physical activity and its contribution to the health-related quality of life of ambulatory individuals with chronic stroke. Health Qual. Life Outcomes 8, 80 (2010).
28
J. Jutai, S. Coulson, R. Teasell, M. Bayley, J. Garland, N. Mayo, S. Wood-Dauphinee, Mobility assistive device utilization in a prospective study of patients with first-ever stroke. Arch. Phys. Med. Rehabil. 88, 1268–1275 (2007).
29
L. E. Skolarus, J. F. Burke, V. A. Freedman, The role of accommodations in poststroke disability management. J. Gerontol. B Psychol. Sci. Soc. Sci. 69 (suppl. 1), S26–S34 (2014).
30
P. M. Kluding, K. Dunning, M. W. O’Dell, S. S. Wu, J. Ginosian, J. Feld, K. McBride, Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke 44, 1660–1669 (2013).
31
A. Vistamehr, S. A. Kautz, R. R. Neptune, The influence of solid ankle-foot-orthoses on forward propulsion and dynamic balance in healthy adults during walking. Clin. Biomech. 29, 583–589 (2014).
32
R. van Swigchem, M. Roerdink, V. Weerdesteyn, A. C. Geurts, A. Daffertshofer, The capacity to restore steady gait after a step modification is reduced in people with poststroke foot drop using an ankle-foot orthosis. Phys. Ther. 94, 654–663 (2014).
33
C. Marini, T. Russo, G. Felzani, Incidence of stroke in young adults: A review. Stroke Res. Treat. 2011, 535672 (2010).
34
D. Griffiths, J. Sturm, Epidemiology and etiology of young stroke. Stroke Res. Treat. 2011, 209370 (2011).
35
M. Goldfarb, B. E. Lawson, A. H. Shultz, Realizing the promise of robotic leg prostheses. Sci. Transl. Med. 5, 210ps15 (2013).
36
A. M. Dollar, H. Herr, Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans. Robot. 24, 144–158 (2008).
37
F. A. Panizzolo, I. Galiana, A. T. Asbeck, C. Siviy, K. Schmidt, K. G. Holt, C. J. Walsh, A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. J. Neuroeng. Rehabil. 13, 43 (2016).
38
Y. Ding, I. Galiana, A. Asbeck, B. Quinlivan, S. M. M. De Rossi, C. J. Walsh, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2014), pp. 1327–1334.
39
J. Bae, S. M. M. De Rossi, K. O’Donnell, K. L. Hendron, L. N. Awad, T. R. Teles Dos Santos, V. L. De Araujo, Y. Ding, K. G. Holt, T. D. Ellis, C. J. Walsh, in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (IEEE, 2015), pp. 131–138.
40
A. T. Asbeck, R. J. Dyer, A. F. Larusson, C. J. Walsh, Biologically-inspired soft exosuit. IEEE Int. Conf. Rehabil. Robot. 2013, 6650455 (2013).
41
D. R. Louie, J. J. Eng, T. LamSpinal Cord Injury Research Evidence (SCIRE) Research Team, Gait speed using powered robotic exoskeletons after spinal cord injury: A systematic review and correlational study. J. Neuroeng. Rehabil. 12, 82 (2015).
42
A. J. Veale, S. Q. Xie, Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies. Med. Eng. Phys. 38, 317–325 (2016).
43
A. T. Asbeck, S. M. M. De Rossi, I. Galiana, Y. Ding, C. J. Walsh, Stronger, smarter, softer: Next-generation wearable robots. IEEE Robot. Autom. Mag. 21, 22–33 (2014).
44
A. T. Asbeck, K. Schmidt, I. Galiana, C. J. Walsh, in International Conference on Robotics and Automation (ICRA) (IEEE, 2015).
45
F. Panizzolo, I. Galiana, A. T. Asbeck, K. Schmidt, C. Neill, F. Saucedo, S. Allen, C. Siviy, P. Malcolm, K. Holt, C. J. Walsh, in 7th International Symposium on Adaptive Motion of Animals and Machines (AMAM) (AMAM, 2015).
46
Y. Ding, I. Galiana, A. T. Asbeck, S. M. M. De Rossi, J. Bae, T. R. Teles Dos Santos, V. L. de Araujo, S. Lee, K. Holt, C. J. Walsh, Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 119–130 (2017).
47
A. T. Asbeck, S. M. M. De Rossi, K. G. Holt, C. J. Walsh, A biologically inspired soft exosuit for walking assistance. Int. J. Rob. Res. 34, 744–762 (2015).
48
B. T. Quinlivan, S. Lee, P. Malcolm, D. M. Rossi, M. Grimmer, C. Siviy, N. Karavas, D. Wagner, A. Asbeck, I. Galiana, C. J. Walsh, Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Sci. Robot. 2, eaah4416 (2017).
49
L. N. Awad, D. S. Reisman, R. T. Pohlig, S. A. Binder-Macleod, Reducing the cost of transport and increasing walking distance after stroke: A randomized controlled trial on fast locomotor training combined with functional electrical stimulation. Neurorehabil. Neural Repair 30, 661–670 (2016).
50
K. Z. Takahashi, M. D. Lewek, G. S. Sawicki, A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: A feasibility study. J. Neuroeng. Rehabil. 12, 23 (2015).
51
A. A. Schmid, M. Van Puymbroeck, P. A. Altenburger, T. A. Dierks, K. K. Miller, T. M. Damush, L. S. Williams, Balance and balance self-efficacy are associated with activity and participation after stroke: A cross-sectional study in people with chronic stroke. Arch. Phys. Med. Rehabil. 93, 1101–1107 (2012).
52
M. A. French, M. F. Moore, R. Pohlig, D. Reisman, Self-efficacy mediates the relationship between balance/walking performance, activity, and participation after stroke. Top. Stroke Rehabil. 23, 77–83 (2016).
53
H. Hsiao, T. M. Zabielski, J. A. Palmer, J. S. Higginson, S. A. Binder-Macleod, Evaluation of measurements of propulsion used to reflect changes in walking speed in individuals poststroke. J. Biomech. 49, 4107–4112 (2016).
54
R. L. Waters, S. Mulroy, The energy expenditure of normal and pathologic gait. Gait Posture 9, 207–231 (1999).
55
T. M. Kesar, S. A. Binder-Macleod, G. E. Hicks, D. S. Reisman, Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke. Gait Posture 33, 314–317 (2011).
56
Y. Ding, I. Galiana, C. Siviy, F. A. Panizzolo, C. J. Walsh, in IEEE International Conference on Robotics and Automation (IEEE, 2016).
57
M. G. Bowden, C. K. Balasubramanian, R. R. Neptune, S. A. Kautz, Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke 37, 872–876 (2006).
58
S. Nadeau, D. Gravel, A. B. Arsenault, D. Bourbonnais, Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clin. Biomech. 14, 125–135 (1999).
59
S. J. Mulroy, T. Klassen, J. K. Gronley, V. J. Eberly, D. A. Brown, K. J. Sullivan, Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: An exploratory study. Phys. Ther. 90, 209–223 (2010).
60
A. L. Hall, C. L. Peterson, S. A. Kautz, R. R. Neptune, Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis. Clin. Biomech. 26, 509–515 (2011).
61
C. L. Peterson, J. Cheng, S. A. Kautz, R. R. Neptune, Leg extension is an important predictor of paretic leg propulsion in hemiparetic walking. Gait Posture 32, 451–456 (2010).
62
R. R. Neptune, S. A. Kautz, F. E. Zajac, Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 34, 1387–1398 (2001).
63
C. L. Peterson, A. L. Hall, S. A. Kautz, R. R. Neptune, Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking. J. Biomech. 43, 2348–2355 (2010).
64
M. G. Bowden, C. K. Balasubramanian, A. L. Behrman, S. A. Kautz, Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabil. Neural Repair 22, 672–675 (2008).
65
L. N. Awad, S. A. Binder-Macleod, R. T. Pohlig, D. S. Reisman, Paretic propulsion and trailing limb angle are key determinants of long-distance walking function after stroke. Neurorehabil. Neural Repair 29, 499–508 (2015).
66
C. J. Wutzke, G. S. Sawicki, M. D. Lewek, The influence of a unilateral fixed ankle on metabolic and mechanical demands during walking in unimpaired young adults. J. Biomech. 45, 2405–2410 (2012).
67
D. M. Wert, J. S. Brach, S. Perera, J. VanSwearingen, The association between energy cost of walking and physical function in older adults. Arch. Gerontol. Geriatr. 57, 198–203 (2013).
68
R. Lapointe, Y. Lajoie, O. Serresse, H. Barbeau, Functional community ambulation requirements in incomplete spinal cord injured subjects. Spinal Cord 39, 327–335 (2001).
69
M. Franceschini, A. Rampello, M. Agosti, M. Massucci, F. Bovolenta, P. Sale, Walking performance: Correlation between energy cost of walking and walking participation. New statistical approach concerning outcome measurement. PLOS ONE 8, e56669 (2013).
70
J. L. Moore, E. J. Roth, C. Killian, T. G. Hornby, Locomotor training improves daily stepping activity and gait efficiency in individuals poststroke who have reached a “plateau” in recovery. Stroke 41, 129–135 (2010).
71
J. A. Schrack, V. Zipunnikov, E. M. Simonsick, S. Studenski, L. Ferrucci, Rising energetic cost of walking predicts gait speed decline with aging. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 71, 947–953 (2016).
72
S. Studenski, S. Perera, K. Patel, C. Rosano, K. Faulkner, M. Inzitari, J. Brach, J. Chandler, P. Cawthon, E. B. Connor, M. Nevitt, M. Visser, S. Kritchevsky, S. Badinelli, T. Harris, A. B. Newman, J. Cauley, L. Ferrucci, J. Guralnik, Gait speed and survival in older adults. JAMA 305, 50–58 (2011).
73
A. Middleton, S. L. Fritz, M. Lusardi, Walking speed: The functional vital sign. J. Aging Phys. Act. 23, 314–322 (2015).
74
B. A. Franklin, J. Brinks, R. Sacks, J. Trivax, H. Friedman, Reduced walking speed and distance as harbingers of the approaching grim reaper. Am. J. Cardiol. 116, 313–317 (2015).
75
M. W. Brault, Americans with Disabilities: 2010 (U.S. Census Bureau, 2012).
76
D. Borton, S. Micera, J. R. Millán, G. Courtine, Personalized neuroprosthetics. Sci. Transl. Med. 5, 210rv2 (2013).
77
T. M. Kesar, D. S. Reisman, J. S. Higginson, L. N. Awad, S. A. Binder-Macleod, Changes in post-stroke gait biomechanics induced by one session of gait training. Phys. Med. Rehabil. Int. 2, 1072 (2015).
78
C. P. Phadke, Immediate effects of a single inclined treadmill walking session on level ground walking in individuals after stroke. Am. J. Phys. Med. Rehabil. 91, 337–345 (2012).
79
H. Hsiao, L. N. Awad, J. A. Palmer, J. S. Higginson, S. A. Binder-Macleod, Contribution of paretic and nonparetic limb peak propulsive forces to changes in walking speed in individuals poststroke. Neurorehabil. Neural Repair 30, 743–752 (2016).
80
R. L. Routson, D. J. Clark, M. G. Bowden, S. A. Kautz, R. R. Neptune, The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait Posture 38, 511–517 (2013).
81
K. R. Lohse, C. E. Lang, L. A. Boyd, Is more better? Using metadata to explore dose–response relationships in stroke rehabilitation. Stroke 45, 2053–2058 (2014).
82
T. G. Hornby, C. L. Holleran, P. W. Hennessy, A. L. Leddy, M. Connolly, J. Camardo, J. Woodward, G. Mahtani, L. Lovell, E. J. Roth, Variable Intensive Early Walking Poststroke (VIEWS): A randomized controlled trial. Neurorehabil. Neural Repair 30, 440–450 (2016).
83
A. Norlander, E. Carlstedt, A.-C. Jönsson, E. M. Lexell, A. Ståhl, A. Lindgren, S. Iwarsson, Long-term predictors of social and leisure activity 10 years after stroke. PLOS ONE 11, e0149395 (2016).
84
J. A. Kleim, T. A. Jones, Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 51, S225–S239 (2008).
85
L. R. Sheffler, J. Chae, Technological advances in interventions to enhance poststroke gait. Phys. Med. Rehabil. Clin. N. Am. 24, 305–323 (2013).
86
L. N. Awad, D. S. Reisman, T. M. Kesar, S. A. Binder-Macleod, Targeting paretic propulsion to improve poststroke walking function: A preliminary study. Arch. Phys. Med. Rehabil. 95, 840–848 (2014).
87
L. W. Forrester, A. Roy, C. Hafer-Macko, H. I. Krebs, R. F. Macko, Task-specific ankle robotics gait training after stroke: A randomized pilot study. J. Neuroeng. Rehabil. 13, 51 (2016).
88
R. C. Browning, J. R. Modica, R. Kram, A. Goswami, The effects of adding mass to the legs on the energetics and biomechanics of walking. Med. Sci. Sports Exerc. 39, 515–525 (2007).
89
H. Hsiao, B. A. Knarr, J. S. Higginson, S. A. Binder-Macleod, Mechanisms to increase propulsive force for individuals poststroke. J. Neuroeng. Rehabil. 12, 40 (2015).
90
H. Hsiao, B. A. Knarr, J. S. Higginson, S. A. Binder-Macleod, The relative contribution of ankle moment and trailing limb angle to propulsive force during gait. Hum. Mov. Sci. 39, 212–221 (2015).
91
H. Hsiao, J. S. Higginson, S. A. Binder-Macleod, Baseline predictors of treatment gains in peak propulsive force in individuals poststroke. J. Neuroeng. Rehabil. 13, 2 (2016).
92
D. A. Winter, Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological (University of Waterloo Press, 1991).
93
H. Hsiao, B. A. Knarr, R. T. Pohlig, J. S. Higginson, S. A. Binder-Macleod, Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke. J. Biomech. 49, 388–395 (2016).
94
M. G. Bowden, A. L. Behrman, M. Woodbury, C. M. Gregory, C. A. Velozo, S. A. Kautz, Advancing measurement of locomotor rehabilitation outcomes to optimize interventions and differentiate between recovery versus compensation. J. Neurol. Phys. Ther. 36, 38–44 (2012).
95
J. Skidmore, P. Artemiadis, On the effect of walking surface stiffness on inter-limb coordination in human walking: Toward bilaterally informed robotic gait rehabilitation. J. Neuroeng. Rehabil. 13, 32 (2016).

Information & Authors

Information

Published In

Science Translational Medicine
Volume 9 | Issue 400
July 2017

Submission history

Received: 12 September 2016
Accepted: 7 July 2017

Permissions

Request permissions for this article.

Acknowledgments

We thank C. Siviy and F. Saucedo for their assistance with data collection and processing. We thank G. Greeley, T. Wong, Y. Ding, M. Athanassiu, N. Menard, M. Rouleau, N. Karavas, I. Galiana, and A. Asbeck for their assistance developing the exosuit. We thank S. Sullivan, M. Jackson, N. Zingman-Daniels, L. Bizarro, and D. Roberts of the Wyss Institute Clinical Research Team and S. Binder-Macleod for their assistance with the study. We thank our study participants who gave their time for this research. Funding: This work was supported by the Defense Advanced Research Projects Agency (DARPA) Warrior Web Program (contract number W911NF-14-C-0051). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of DARPA or the U.S. Government. This work was also partially funded by the NSF (CNS-1446464), American Heart Association (15POST25090068), NIH (1KL2TR001411), Rolex Award for Enterprise, Harvard University Star Family Challenge, Wyss Institute for Biologically Inspired Engineering, and Harvard John A. Paulson School of Engineering and Applied Sciences. Author contributions: L.N.A., J.B., K.O., S.M.M.D., K.G.H., T.D.E., and C.J.W. designed the experiments. J.B., K.O., S.M.M.D., K.G.H., and C.J.W. developed the soft exosuit and its actuation system. L.N.A., J.B., K.O., K.H., S.A., and P.K. collected the data. L.N.A., J.B., L.H.S., P.K., and C.J.W. analyzed the data. L.N.A., J.B., and C.J.W. wrote the manuscript. L.N.A., J.B., L.H.S., P.K., and C.J.W. generated the figures and tables. All authors provided critical feedback on the manuscript. Competing interests: Patents have been filed with the U.S. Patent Office describing the exosuit components documented in this manuscript. S.M.M.D., J.B., K.G.H., K.O., and C.J.W. were authors of those patents and patent applications (PCT/US2013/60225, Soft exosuit for assistance with human motion; PCT/US2014/68462, Assistive flexible suits, flexible suit systems, and methods for making and control thereof to assist human mobility; PCT/US2014/40340, Soft exosuit for assistance with human motion; PCT/US2015/51107, Soft exosuit for assistance with human motion). Harvard has entered into a licensing and collaboration agreement with ReWalk Robotics. C.J.W. is a paid consultant to ReWalk Robotics. Data and materials availability: The data supporting the main conclusions of this manuscript are located within the manuscript. Additional data are available upon request (C.J.W., [email protected]).

Authors

Affiliations

Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
Department of Physical Therapy and Athletic Training, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA.
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Suite 403, Cambridge, MA 02138, USA.
Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Suite 403, Cambridge, MA 02138, USA.
Kathleen O’Donnell
Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Suite 403, Cambridge, MA 02138, USA.
Stefano M. M. De Rossi
Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Suite 403, Cambridge, MA 02138, USA.
Department of Physical Therapy and Athletic Training, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA.
Lizeth H. Sloot
Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
Pawel Kudzia
Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
Department of Physical Therapy and Athletic Training, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA.
Department of Physical Therapy and Athletic Training, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA.
Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA.
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 60 Oxford Street, Suite 403, Cambridge, MA 02138, USA.

Funding Information

National Science Foundation: award311818, CNS-1446464
Defense Advanced Research Projects Agency: award311819, W911NF-14-C-0051
American Heart Association: award311817, 15POST25090068
Wyss Institute for Biologically Inspired Engineering: award311822
Harvard University Star Family Challenge: award311821
Harvard John A. Paulson School of Engineering and Applied Sciences: award311823

Notes

*
These authors contributed equally to this work.
Corresponding author. Email: [email protected] (T.D.E.) and [email protected] (C.J.W.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Mobile Unilateral Hip Flexion Exosuit Assistance for Overground Walking in Individuals Post-Stroke: A Case Series, Wearable Robotics: Challenges and Trends, (357-361), (2022).https://doi.org/10.1007/978-3-030-69547-7_58
    Crossref
  2. Alteration of Push-Off Mechanics During Walking with Different Prototype Designs of a Soft Exoskeleton in People with Incomplete Spinal Cord Injury—A Case Series, Wearable Robotics: Challenges and Trends, (203-207), (2022).https://doi.org/10.1007/978-3-030-69547-7_33
    Crossref
  3. Effects of wearable ankle robotics for stair and over-ground training on sub-acute stroke: a randomized controlled trial, Journal of NeuroEngineering and Rehabilitation, 18, 1, (2021).https://doi.org/10.1186/s12984-021-00814-6
    Crossref
  4. Soft, Wearable, and Pleated Pneumatic Interference Actuator Provides Knee Extension Torque for Sit-to-Stand, Soft Robotics, 8, 1, (28-43), (2021).https://doi.org/10.1089/soro.2019.0076
    Crossref
  5. A wearable light-touch contact device for human balance support, Scientific Reports, 11, 1, (2021).https://doi.org/10.1038/s41598-021-85687-4
    Crossref
  6. Wearables in der Schlaganfallmedizin, Klinische Neurophysiologie, 52, 01, (10-24), (2021).https://doi.org/10.1055/a-1254-9616
    Crossref
  7. Ankle intention detection algorithm using electromyography signal, Journal of Computational Design and Engineering, 8, 5, (1234-1242), (2021).https://doi.org/10.1093/jcde/qwab042
    Crossref
  8. State of the art in parallel ankle rehabilitation robot: a systematic review, Journal of NeuroEngineering and Rehabilitation, 18, 1, (2021).https://doi.org/10.1186/s12984-021-00845-z
    Crossref
  9. undefined, 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), (862-865), (2021).https://doi.org/10.1109/NER49283.2021.9441244
    Crossref
  10. Disentangling the energetic costs of step time asymmetry and step length asymmetry in human walking, Journal of Experimental Biology, 224, 12, (2021).https://doi.org/10.1242/jeb.242258
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media