The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis
A stepping stone to ALS drug discovery
ALS is a heterogeneous motor neuron disease for which there is no treatment and for which a common therapeutic target has yet to be identified. In a new study, Imamura et al. developed a drug screen using motor neurons generated from ALS patient induced pluripotent stem cells (iPSCs). They screened existing drugs and showed that inhibitors of Src/c-Abl kinases promoted autophagy and rescued ALS motor neurons from degeneration. One of the drugs was effective for promoting survival of motor neurons derived from ALS patients with different genetic mutations. The Src/c-Abl pathway may be a potential therapeutic target for developing new drugs to treat ALS.
Abstract
Amyotrophic lateral sclerosis (ALS), a fatal disease causing progressive loss of motor neurons, still has no effective treatment. We developed a phenotypic screen to repurpose existing drugs using ALS motor neuron survival as readout. Motor neurons were generated from induced pluripotent stem cells (iPSCs) derived from an ALS patient with a mutation in superoxide dismutase 1 (SOD1). Results of the screen showed that more than half of the hits targeted the Src/c-Abl signaling pathway. Src/c-Abl inhibitors increased survival of ALS iPSC-derived motor neurons in vitro. Knockdown of Src or c-Abl with small interfering RNAs (siRNAs) also rescued ALS motor neuron degeneration. One of the hits, bosutinib, boosted autophagy, reduced the amount of misfolded mutant SOD1 protein, and attenuated altered expression of mitochondrial genes. Bosutinib also increased survival in vitro of ALS iPSC-derived motor neurons from patients with sporadic ALS or other forms of familial ALS caused by mutations in TAR DNA binding protein (TDP-43) or repeat expansions in C9orf72. Furthermore, bosutinib treatment modestly extended survival of a mouse model of ALS with an SOD1 mutation, suggesting that Src/c-Abl may be a potentially useful target for developing new drugs to treat ALS.
Get full access to this article
View all available purchase options and get full access to this article.
Supplementary Material
Summary
Materials and methods
Fig. S1. Generation of iPSCs from control and ALS patients.
Fig. S2. Characterization of motor neurons and genetic correction of mutant SOD1 iPSCs.
Fig. S3. Investigation of the effects of Src/c-Abl inhibitors.
Fig. S4. mRNA expression changes after bosutinib treatment by single-cell analysis.
Fig. S5. Decrease in misfolded proteins after bosutinib treatment.
Fig. S6. Analysis of postmortem ALS spinal cord tissue.
Table S1. List of iPSC clones.
Table S2. Sequence variations in exon regions for sporadic ALS.
Table S3. List of hit compounds.
Table S4. Genes highly expressed in mutant SOD1 ALS motor neurons identified by single-cell RNA-seq.
Table S5. Genes highly expressed in control motor neurons identified by single-cell RNA-seq.
Table S6. List of postmortem spinal cord tissue for immunohistochemistry.
Table S7. List of postmortem spinal cord tissue for ELISA.
Table S8. Primer list for editing of SOD1 gene.
Table S9. Primer list for quantitative PCR.
Resources
File (aaf3962_sm.pdf)
REFERENCES AND NOTES
1
S.-C. Ling, M. Polymenidou, D. W. Cleveland, Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).
2
J. Ravits, S. Appel, R. H. Baloh, R. Barohn, B. R. Brooks, L. Elman, M. K. Floeter, C. Henderson, C. Lomen-Hoerth, J. D. Macklis, L. McCluskey, H. Mitsumoto, S. Przedborski, J. Rothstein, J. Q. Trojanowski, L. H. van den Berg, S. Ringel, Deciphering amyotrophic lateral sclerosis: What phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotrophic. Lateral Scler. Frontotemporal Degener. 14 (suppl. 1), 5–18 (2013).
3
D. R. Rosen, T. Siddique, D. Patterson, D. A. Figlewicz, P. Sapp, A. Hentati, D. Donaldson, J. Goto, J. P. O’Regan, H.-X. Deng, Z. Rahmani, A. Krizus, D. Mckenna-Yasek, A. Cayabyab, S. M. Gaston, R. Berger, R. E. Tanzi, J. J. Halperin, B. Herzfeldt, R. van den Bergh, W.-Y. Hung, T. Bird, G. Deng, D. W. Mulder, C. Smyth, N. G. Laing, E. Soriano, M. A. Pericak-Vance, J. Haines, G. A. Rouleau, J. S. Gusella, H. R. Horvitz, R. H. Brown Jr, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).
4
M. E. Gurney, H. Pu, A. Y. Chiu, M. C. Dal Canto, C. Y. Polchow, D. D. Alexander, J. Caliendo, A. Hentati, Y. W. Kwon, H.-X. Deng, W. Chen, P. Zhai, R. L. Sufit, T. Siddique, Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).
5
N. Egawa, S. Kitaoka, K. Tsukita, M. Naitoh, K. Takahashi, T. Yamamoto, F. Adachi, T. Kondo, K. Okita, I. Asaka, T. Aoi, A. Watanabe, Y. Yamada, A. Morizane, J. Takahashi, T. Ayaki, H. Ito, K. Yoshikawa, S. Yamawaki, S. Suzuki, D. Watanabe, H. Hioki, T. Kaneko, K. Makioka, K. Okamoto, H. Takuma, A. Tamaoka, K. Hasegawa, T. Nonaka, M. Hasegawa, A. Kawata, M. Yoshida, T. Nakahata, R. Takahashi, M. C. N. Marchetto, F. H. Gage, S. Yamanaka, H. Inoue, Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4, 145ra104 (2012).
6
B. Bilican, A. Serio, S. J. Barmada, A. L. Nishimura, G. J. Sullivan, M. Carrasco, H. P. Phatnani, C. A. Puddifoot, D. Story, J. Fletcher, I.-H. Park, B. A. Friedman, G. Q. Daley, D. J. A. Wyllie, G. E. Hardingham, I. Wilmut, S. Finkbeiner, T. Maniatis, C. E. Shaw, S. Chandran, Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc. Natl. Acad. Sci. U.S.A. 109, 5803–5808 (2012).
7
E. Kiskinis, J. Sandoe, L. A. Williams, G. L. Boulting, R. Moccia, B. J. Wainger, S. Han, T. Peng, S. Thams, S. Mikkilineni, C. Mellin, F. T. Merkle, B. N. Davis-Dusenbery, M. Ziller, D. Oakley, J. Ichida, S. Di Costanzo, N. Atwater, M. L. Maeder, M. J. Goodwin, J. Nemesh, R. E. Handsaker, D. Paull, S. Noggle, S. A. McCarroll, J. K. Joung, C. J. Woolf, R. H. Brown, K. Eggan, Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell 14, 781–795 (2014).
8
M. F. Burkhardt, F. J. Martinez, S. Wright, C. Ramos, D. Volfson, M. Mason, J. Garnes, V. Dang, J. Lievers, U. Shoukat-Mumtaz, R. Martinez, H. Gai, R. Blake, E. Vaisberg, M. Grskovic, C. Johnson, S. Irion, J. Bright, B. Cooper, L. Nguyen, I. Griswold-Prenner, A. Javaherian, A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell. Neurosci. 56, 355–364 (2013).
9
H. Chen, K. Qian, Z. Du, J. Cao, A. Petersen, H. Liu, L. W. Blackbourn IV, C.-L. Huang, A. Errigo, Y. Yin, J. Lu, M. Ayala, S.-C. Zhang, Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14, 796–809 (2014).
10
C. J. Donnelly, P.-W. Zhang, J. T. Pham, A. R. Haeusler, N. A. Mistry, S. Vidensky, E. L. Daley, E. M. Poth, B. Hoover, D. M. Fines, N. Maragakis, P. J. Tienari, L. Petrucelli, B. J. Traynor, J. Wang, F. Rigo, C. F. Bennett, S. Blackshaw, R. Sattler, J. D. Rothstein, RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).
11
M. Mitne-Neto, M. Machado-Costa, M. C. N. Marchetto, M. H. Bengtson, C. A. Joazeiro, H. Tsuda, H. J. Bellen, H. C. A. Silva, A. S. B. Oliveira, M. Lazar, A. R. Muotri, M. Zatz, Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum. Mol. Genet. 20, 3642–3652 (2011).
12
K. Woltjen, I. P. Michael, P. Mohseni, R. Desai, M. Mileikovsky, R. Hämäläinen, R. Cowling, W. Wang, P. Liu, M. Gertsenstein, K. Kaji, H.-K. Sung, A. Nagy, piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458, 766–770 (2009).
13
T. T. Ashburn, K. B. Thor Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673–683 (2004).
14
J. S. Brugge, R. L. Erikson, Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269, 346–348 (1977).
15
E. K. Greuber, P. Smith-Pearson, J. Wang, A. M. Pendergast, Role of ABL family kinases in cancer: From leukaemia to solid tumours. Nat. Rev. Cancer 13, 559–571 (2013).
16
P. J. Welch, J. Y. J. Wang, A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75, 779–790 (1993).
17
Y. Huang, Z.-M. Yuan, T. Ishiko, S. Nakada, T. Utsugisawa, T. Kato, S. Kharbanda, D. W. Kufe, Pro-apoptotic effect of the c-Abl tyrosine kinase in the cellular response to 1-β-D-arabinofuranosylcytosine. Oncogene 15, 1947–1952 (1997).
18
J. Mojsilovic-Petrovic, G.-B. Jeong, A. Crocker, A. Arneja, S. David, D. Russell, R. G. Kalb, Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J. Neurosci. 26, 9250–9263 (2006).
19
C. E. Ellis, P. L. Schwartzberg, T. L. Grider, D. W. Fink, R. L. Nussbaum, α-Synuclein is phosphorylated by members of the Src family of protein-tyrosine kinases. J. Biol. Chem. 276, 3879–3884 (2001).
20
S. D. Schlatterer, C. M. Acker, P. Davies, c-Abl in neurodegenerative disease. J. Mol. Neurosci. 45, 445–452 (2011).
21
T. M. Dawson, V. L. Dawson, Parkin plays a role in sporadic Parkinson's disease. Neurodegener Dis 13, 69–71 (2014).
22
Z. Jing, J. Caltagarone, R. Bowser, Altered subcellular distribution of c-Abl in Alzheimer's disease. J. Alzheimers Dis. 17, 409–422 (2009).
23
M. A. Tremblay, C. M. Acker, P. Davies, Tau phosphorylated at tyrosine 394 is found in Alzheimer's disease tangles and can be a product of the Abl-related kinase, Arg. J. Alzheimer’s Dis. 19, 721–733 (2010).
24
R. Katsumata, S. Ishigaki, M. Katsuno, K. Kawai, J. Sone, Z. Huang, H. Adachi, F. Tanaka, F. Urano, G. Sobue, c-Abl inhibition delays motor neuron degeneration in the G93A mouse, an animal model of amyotrophic lateral sclerosis. PLOS ONE 7, e46185 (2012).
25
M. E. Hester, M. J. Murtha, S. Song, M. Rao, C. J. Miranda, K. Meyer, J. Tian, G. Boulting, D. V. Schaffer, M. X. Zhu, S. L. Pfaff, F. H. Gage, B. K. Kaspar, Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Mol. Ther. 19, 1905–1912 (2011).
26
T. Fujisawa, K. Homma, N. Yamaguchi, H. Kadowaki, N. Tsuburaya, I. Naguro, A. Matsuzawa, K. Takeda, Y. Takahashi, J. Goto, S. Tsuji, H. Nishitoh, H. Ichijo, A novel monoclonal antibody reveals a conformational alteration shared by amyotrophic lateral sclerosis-linked SOD1 mutants. Ann. Neurol. 72, 739–749 (2012).
27
F. Gros-Louis, G. Soucy, R. Lariviere, J.-P. Julien, Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J. Neurochem. 113, 1188–1199 (2010).
28
Y. M. Yang, S. K. Gupta, K. J. Kim, B. E. Powers, A. Cerqueira, B. J. Wainger, H. D. Ngo, K. A. Rosowski, P. A. Schein, C. A. Ackeifi, A. C. Arvanites, L. S. Davidow, C. J. Woolf, L. L. Rubin, A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell 12, 713–726 (2013).
29
T. E. Brotherton, Y. Li, D. Cooper, M. Gearing, J.-P. Julien, J. D. Rothstein, K. Boylan, J. D. Glass, Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. Proc. Natl. Acad. Sci. U.S.A. 109, 5505–5510 (2012).
30
A.-L. Mahul-Mellier, B. Fauvet, A. Gysbers, I. Dikiy, A. Oueslati, S. Georgeon, A. J. Lamontanara, A. Bisquertt, D. Eliezer, E. Masliah, G. Halliday, O. Hantschel, H. A. Lashuel, c-Abl phosphorylates α-synuclein and regulates its degradation: Implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson's disease. Hum. Mol. Genet. 23, 2858–2879 (2014).
31
A. Ertmer, V. Huber, S. Gilch, T. Yoshimori, V. Erfle, J. Duyster, H.-P. Elsässer, H. M. Schatzl, The anticancer drug imatinib induces cellular autophagy. Leukemia 21, 936–942 (2007).
32
I. Choi, H. D. Song, S. Lee, Y. I. Yang, J. H. Nam, S. J. Kim, J.-J. Sung, T. Kang, J. Yi, Direct observation of defects and increased ion permeability of a membrane induced by structurally disordered Cu/Zn-superoxide dismutase aggregates. PLOS ONE 6, e28982 (2011).
33
B. J. Wainger, E. Kiskinis, C. Mellin, O. Wiskow, S. S. W. Han, J. Sandoe, N. P. Perez, L. A. Williams, S. Lee, G. Boulting, J. D. Berry, R. H. Brown Jr, M. E. Cudkowicz, B. P. Bean, K. Eggan, C. J. Woolf, Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. 7, 1–11 (2014).
34
A.-C. Devlin, K. Burr, S. Borooah, J. D. Foster, E. M. Cleary, I. Geti, L. Vallier, C. E. Shaw, S. Chandran, G. B. Miles, Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. Nat. Commun. 6, 5999 (2015).
35
G. Le Masson, S. Przedborski, L. F. Abbott, A computational model of motor neuron degeneration. Neuron 83, 975–988 (2014).
36
F. Musumeci, S. Schenone, C. Brullo, M. Botta, An update on dual Src/Abl inhibitors. Future Med. Chem. 4, 799–822 (2012).
37
M. Soda, Y. L. Choi, M. Enomoto, S. Takada, Y. Yamashita, S. Ishikawa, S.-i. Fujiwara, H. Watanabe, K. Kurashina, H. Hatanaka, M. Bando, S. Ohno, Y. Ishikawa, H. Aburatani, T. Niki, Y. Sohara, Y. Sugiyama, H. Mano, Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).
38
Y. Ito, P. Pandey, N. Mishra, S. Kumar, N. Narula, S. Kharbanda, S. Saxena, D. Kufe, Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol. Cell. Biol. 21, 6233–6242 (2001).
39
Y.-S. Fang, K.-J. Tsai, Y.-J. Chang, P. Kao, R. Woods, P.-H. Kuo, C.-C. Wu, J.-Y. Liao, S.-C. Chou, V. Lin, L.-W. Jin, H. S. Yuan, I. H. Cheng, P.-H. Tu, Y.-R. Chen, Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat. Commun. 5, 4824 (2014).
40
M. Neumann, D. M. Sampathu, L. K. Kwong, A. C. Truax, M. C. Micsenyi, T. T. Chou, J. Bruce, T. Schuck, M. Grossman, C. M. Clark, L. F. McCluskey, B. L. Miller, E. Masliah, I. R. Mackenzie, H. Feldman, W. Feiden, H. A. Kretzschmar, J. Q. Trojanowski, V. M.-Y. Lee, Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314,130–133 (2006).
41
C. Wenqiang, I. Lonskaya, M. L. Hebron, Z. Ibrahim, R. T. Olszewski, J. H. Neale, C. E.-H. Moussa, Parkin-mediated reduction of nuclear and soluble TDP-43 reverses behavioral decline in symptomatic mice. Hum. Mol. Genet. 23, 4960–4969 (2014).
42
K. J. Martin, J. S. C. Arthur, Selective kinase inhibitors as tools for neuroscience research. Neuropharmacology 63, 1227–1237 (2012).
43
T. J. Boggon, M. J. Eck, Structure and regulation of Src family kinases. Oncogene 23, 7918–7927 (2004).
44
J. D. Rothstein, Of mice and men: Reconciling preclinical ALS mouse studies and human clinical trials. Ann. Neurol. 53, 423–426 (2003).
45
K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).
46
K. Okita, T. Yamakawa, Y. Matsumura, Y. Sato, N. Amano, A. Watanabe, N. Goshima, S. Yamanaka, An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31, 458–466 (2013).
47
N. Fusaki, H. Ban, A. Nishiyama, K. Saeki, M. Hasegawa, Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 348–362 (2009).
48
H. L. Li, N. Fujimoto, N. Sasakawa, S. Shirai, T. Ohkame, T. Sakuma, M. Tanaka, N. Amano, A. Watanabe, H. Sakurai, T. Yamamoto, S. Yamanaka, A. Hotta, Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep. 4, 143–154 (2015).
49
H. Matsui, N. Fujimoto, N. Sasakawa, Y. Ohinata, M. Shima, S. Yamanaka, M. Sugimoto, A. Hotta, Delivery of full-length factor VIII using a piggyBac transposon vector to correct a mouse model of hemophilia A. PLOS ONE 9, e104957 (2014).
50
S.-I. Kim, F. Oceguera-Yanez, C. Sakurai, M. Nakagawa, S. Yamanaka, K. Woltjen, Inducible transgene expression in human iPS cells using versatile all-in-one piggyBac transposons. Methods Mol. Biol. 1357, 111–131 (2015).
51
G. B. Miles, D. C. Yohn, H. Wichterle, T. M. Jessell, V. F. Rafuse, R. M. Brownstone, Functional properties of motoneurons derived from mouse embryonic stem cells. J. Neurosci. 24, 7848–7858 (2004).
52
T. Kondo, M. Asai, K. Tsukita, Y. Kutoku, Y. Ohsawa, Y. Sunada, K. Imamura, N. Egawa, N. Yahata, K. Okita, K. Takahashi, I. Asaka, T. Aoi, A. Watanabe, K. Watanabe, C. Kadoya, R. Nakano, D. Watanabe, K. Maruyama, O. Hori, S. Hibino, T. Choshi, T. Nakahata, H. Hioki, T. Kaneko, M. Naitoh, K. Yoshikawa, S. Yamawaki, S. Suzuki, R. Hata, S. Ueno, T. Seki, K. Kobayashi, T. Toda, K. Murakami, K. Irie, W. L. Klein, H. Mori, T. Asada, R. Takahashi, N. Iwata, S. Yamanaka, H. Inoue, Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12, 487–496 (2013).
53
A. Van Hoecke, L. Schoonaert, R. Lemmens, M. Timmers, K. A. Staats, A. S. Laird, E. Peeters, T. Philips, A. Goris, B. Dubois, P. M. Andersen, A. Al-Chalabi, V. Thijs, A. M. Turnley, P. W. van Vught, J. H. Veldink, O. Hardiman, L. Van Den Bosch, P. Gonzalez-Perez, P. Van Damme, R. H. Brown Jr, L. H. van den Berg, W. Robberecht, EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat. Med. 18, 1418–1422 (2012).
54
C. S. Lobsiger, S. Boillee, C. Pozniak, A. M. Khan, M. McAlonis-Downes, J. W. Lewcock, D. W. Cleveland, C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice. Proc. Natl. Acad. Sci. U.S.A. 110, E4385–E4392 (2013).
55
T. Fujisawa, M. Takahashi, Y. Tsukamoto, N. Yamaguchi, M. Nakoji, M. Endo, H. Kodaira, Y. Hayashi, H. Nishitoh, I. Naguro, K. Homma, H. Ichijo, The ASK1-specific inhibitors K811 and K812 prolong survival in a mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet. 25, 245–253 (2016).
56
B. R. Brooks, R. G. Miller, M. Swash, T. L. Munsat, El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1, 293–299 (2000).
(0)eLetters
eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.
Log In to Submit a ResponseNo eLetters have been published for this article yet.
Information & Authors
Information
Published In

Science Translational Medicine
Volume 9 | Issue 391
May 2017
May 2017
Copyright
Copyright © 2017, American Association for the Advancement of Science.
Submission history
Received: 15 April 2015
Accepted: 13 December 2016
Acknowledgments
We thank all of our co-workers and collaborators including T. Enami, R. Shibukawa, M. Funayama, M. Kawada, K. Goto, H. Houlden, E. Preza, and C. Okada for their technical support. We acknowledge P. Karagiannis for critical reading of the paper and N. Endo and R. Taniguchi for their administrative support. Funding: This work was funded in part by a grant from the iPS Cell Research Fund (S.Y.); the Program for Intractable Diseases Research utilizing Disease-specific iPS cells from the Japan Agency for Medical Research and Development (AMED) (H. Inoue); the Research Center Network for Realization of Regenerative Medicine from AMED (A.H., S.Y., and H. Inoue); Research Project for Practical Applications of Regenerative Medicine from AMED (A.O., T.E., and H. Inoue); Parkinson’s UK Senior Fellowship (F-0902) (T. Kunath); grant-in-aid for scientific research from the Japan Society for the Promotion of Science (15H04270; H. Ito, 15H05581; A.H.); and the Daiichi Sankyo Foundation of Life Science (H. Inoue). Author contributions: H. Inoue conceived the project; K.I. and H. Inoue designed the experiments; K.I., K.T., T.Y., T. Kondo, and S. Kitaoka performed cell culture, molecular experiments, and compound screen; A.W. performed single-cell analysis; K.I. and A. Tanaka performed animal experiments; S. Kaneko, T.A., and H. Ito performed human-sample analysis; N.O., M.H., and H.A. performed resequencing; K.I., A.W., T.Y., D.W., and H. Inoue analyzed the data; K.W., A.H., A.O., T. Kunath., S.W., T.E., T.F., H.N., K.H., H. Ichijo, J-.P.J., and S. Kaneko contributed reagents, materials, and analysis tools; Y.I., M.M., H.T., A. Tamaoka, H.F., K.M., K.O., and R.K. recruited patients; D.W., R.T., and S.Y. provided critical reading and scientific discussions; K.I. and H. Inoue wrote the paper. Competing interests: S.Y. is an unpaid scientific advisor to iPS Academia Japan. Kyoto University has filed patents related to this manuscript: PCT application PCT/JP2014/058142, entitled “Pluripotent stem cells for neuronal differentiation” with K.I. and H. Inoue as coinventors; and PCT application PCT/JP2016/050883, entitled “Agent for preventing and/or treating Amyotrophic lateral sclerosis” with K.I. and H. Inoue as coinventors. All other authors declare that they have no competing interests.
Authors
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Export citation
Select the format you want to export the citation of this publication.
Cited by
- Stem cells in regenerative processes: Induced pluripotent stem cells, Regenerative Nephrology, (145-159), (2022).https://doi.org/10.1016/B978-0-12-823318-4.00030-5
- Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: A mechanism review, Biomedicine & Pharmacotherapy, 133, (110968), (2021).https://doi.org/10.1016/j.biopha.2020.110968
- Drug Discovery in Induced Pluripotent Stem Cell Models, Reference Module in Biomedical Sciences, (2021).https://doi.org/10.1016/B978-0-12-820472-6.00049-9
- Towards Advanced iPSC-based Drug Development for Neurodegenerative Disease, Trends in Molecular Medicine, 27, 3, (263-279), (2021).https://doi.org/10.1016/j.molmed.2020.09.013
- Phenotyping Neurodegeneration in Human iPSCs, Annual Review of Biomedical Data Science, 4, 1, (83-100), (2021).https://doi.org/10.1146/annurev-biodatasci-092820-025214
- Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases, Journal of Medicinal Chemistry, 64, 3, (1283-1345), (2021).https://doi.org/10.1021/acs.jmedchem.0c01511
- Induced pluripotent stem cells as models for Amyotrophic Lateral Sclerosis, iPSCs for Modeling Central Nervous System Disorders, (83-104), (2021).https://doi.org/10.1016/B978-0-323-85764-2.00001-6
- Electrophysiological Phenotype Characterization of Human iPSC‐Derived Neuronal Cell Lines by Means of High‐Density Microelectrode Arrays, Advanced Biology, 5, 3, (2000223), (2021).https://doi.org/10.1002/adbi.202000223
- Losing the Beat: Contribution of Purkinje Cell Firing Dysfunction to Disease, and Its Reversal, Neuroscience, 462, (247-261), (2021).https://doi.org/10.1016/j.neuroscience.2020.06.008
- Generation of Motor Neurons from Human ESCs/iPSCs Using Sendai Virus Vectors, Neural Reprogramming, (127-132), (2021).https://doi.org/10.1007/978-1-0716-1601-7_9
- See more
Loading...
View Options
Check Access
Log in to view the full text
AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.
- Become a AAAS Member
- Activate your AAAS ID
- Purchase Access to Other Journals in the Science Family
- Account Help
Log in via OpenAthens.
Log in via Shibboleth.
More options
Register for free to read this article
As a service to the community, this article is available for free. Login or register for free to read this article.