Only a Matter of Time

In the fast-paced world of scientific research, most conclusions are drawn on few—or single—time points or with animal models that may accelerate—but not always accurately reproduce—disease progression. Longitudinal analyses are rare. Indeed, this is the case in influenza virus research, where it is thought that previous infections influence the outcome of subsequent infections, but little is actually known about how sequential exposures to antigenically diverse viruses affect the antibody response to influenza A viruses. Now, Miller et al. use samples obtained over a 20-year period from 40 individuals involved in the Framingham Heart Study to look at antibody titers to seasonal and pandemic influenza strains over time.
The authors find longitudinal increases in neutralizing antibodies to previously encountered seasonal and pandemic flu strains. This increase was not age-dependent because it was observed against strains encountered later in life as well as in earlier exposures. Titers to the more conserved hemagglutinin stalk domain increased modestly as well, but no neutralizing antibody titer increase was observed against a more antigenically stable virus (human cytomegalovirus). These results suggest that antigenic variation may drive the hierarchical humoral immune response to influenza strains. The contribution of antigenic variation to antibody titers to the conserved stalk region supports the pursuit of vaccine strategies that increase exposure to antigenically diverse strains of influenza.


Antigenic diversity shapes immunity in distinct and unexpected ways. This is particularly true of the humoral response generated against influenza A viruses. Although it is known that immunological memory developed against previously encountered influenza A virus strains affects the outcome of subsequent infections, exactly how sequential exposures to antigenically variant viruses shape the humoral immune response in humans remains poorly understood. To address this important question, we performed a longitudinal analysis of antibody titers against various pandemic and seasonal strains of influenza virus spanning a 20-year period (1987 to 2008) with samples from 40 individuals (birth dates, 1917 to 1952) obtained from the Framingham Heart Study. Longitudinal increases in neutralizing antibody titers were observed against previously encountered pandemic H2N2, H3N2, and H1N1 influenza A virus strains. Antibody titers against seasonal strains encountered later in life also increased longitudinally at a rate similar to that against their pandemic predecessors. Titers of cross-reactive antibodies specific to the hemagglutinin stalk domain were also investigated because they are influenced by exposure to antigenically diverse influenza A viruses. These titers rose modestly over time, even in the absence of major antigenic shifts. No sustained increase in neutralizing antibody titers against an antigenically more stable virus (human cytomegalovirus) was observed. The results herein describe a role for antigenic variation in shaping the humoral immune compartment and provide a rational basis for the hierarchical nature of antibody titers against influenza A viruses in humans.

Get full access to this article

View all available purchase options and get full access to this article.

Already a subscriber or AAAS Member? Log In

References and Notes

McCullers J. A., Van De Velde L. A., Allison K. J., Branum K. C., Webby R. J., Flynn P. M., Recipients of vaccine against the 1976 “swine flu” have enhanced neutralization responses to the 2009 novel H1N1 influenza virus. Clin. Infect. Dis. 50, 1487–1492 (2010).
Manicassamy B., Medina R. A., Hai R., Tsibane T., Stertz S., Nistal-Villán E., Palese P., Basler C. F., García-Sastre A., Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines. PLoS Pathog. 6, e1000745 (2010).
Miller M. S., Tsibane T., Krammer F., Hai R., Rahmat S., Basler C. F., Palese P., 1976 and 2009 H1N1 influenza virus vaccines boost anti-hemagglutinin stalk antibodies in humans. J. Infect. Dis. 207, 98–105 (2013).
Gras S., Kedzierski L., Valkenburg S. A., Laurie K., Liu Y. C., Denholm J. T., Richards M. J., Rimmelzwaan G. F., Kelso A., Doherty P. C., Turner S. J., Rossjohn J., Kedzierska K., Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proc. Natl. Acad. Sci. U.S.A. 107, 12599–12604 (2010).
Palese P., Wang T. T., Why do influenza virus subtypes die out? A hypothesis. MBio 2, e00150-11 (2011).
Pica N., Hai R., Krammer F., Wang T. T., Maamary J., Eggink D., Tan G. S., Krause J. C., Moran T., Stein C. R., Banach D., Wrammert J., Belshe R. B., García-Sastre A., Palese P., Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proc. Natl. Acad. Sci. U.S.A. 109, 2573–2578 (2012).
Webster R. G., Original antigenic sin in ferrets: The response to sequential infections with influenza viruses. J. Immunol. 97, 177–183 (1966).
Francis T., Davenport F. M., Hennessy A. V., A serological recapitulation of human infection with different strains of influenza virus. Trans. Assoc. Am. Physicians 66, 231–239 (1953).
Hoskins T. W., Davies J. R., Smith A. J., Miller C. L., Allchin A., Assessment of inactivated influenza-A vaccine after three outbreaks of influenza A at Christ’s Hospital. Lancet 1, 33–35 (1979).
Amanna I. J., Carlson N. E., Slifka M. K., Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).
Original antigenic sin. N. Engl. J. Med. 258, 1016–1017 (1958).
de St Groth F., Webster R. G., Disquisitions of original antigenic sin. I. Evidence in man. J. Exp. Med. 124, 331–345 (1966).
de St Groth F., Webster R. G., Disquisitions on original antigenic sin. II. Proof in lower creatures. J. Exp. Med. 124, 347–361 (1966).
Davenport F. M., Hennessy A. V., Francis T., Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J. Exp. Med. 98, 641–656 (1953).
Lessler J., Riley S., Read J. M., Wang S., Zhu H., Smith G. J. D., Guan Y., Jiang C. Q., Cummings D. A. T., Evidence for antigenic seniority in influenza A (H3N2) antibody responses in southern China. PLoS Pathog. 8, e1002802 (2012).
Li G. M., Chiu C., Wrammert J., McCausland M., Andrews S. F., Zheng N. Y., Lee J. H., Huang M., Qu X., Edupuganti S., Mulligan M., Das S. R., Yewdell J. W., Mehta A. K., Wilson P. C., Ahmed R., Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc. Natl. Acad. Sci. U.S.A. 109, 9047–9052 (2012).
Sui J., Sheehan J., Hwang W. C., Bankston L. A., Burchett S. K., Huang C. Y., Liddington R. C., Beigel J. H., Marasco W. A., Wide prevalence of heterosubtypic broadly neutralizing human anti-influenza A antibodies. Clin. Infect. Dis. 52, 1003–1009 (2011).
Wrammert J., Koutsonanos D., Li G. M., Edupuganti S., Sui J., Morrissey M., McCausland M., Skountzou I., Hornig M., Lipkin W. I., Mehta A., Razavi B., Del Rio C., Zheng N. Y., Lee J. H., Huang M., Ali Z., Kaur K., Andrews S., Amara R. R., Wang Y., Das S. R., O’Donnell C. D., Yewdell J. W., Subbarao K., Marasco W. A., Mulligan M. J., Compans R., Ahmed R., Wilson P. C., Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011).
Corti D., Suguitan A. L., Pinna D., Silacci C., Fernandez-Rodriguez B. M., Vanzetta F., Santos C., Luke C. J., Torres-Velez F. J., Temperton N. J., Weiss R. A., Sallusto F., Subbarao K., Lanzavecchia A., Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J. Clin. Invest. 120, 1663–1673 (2010).
Corti D., Voss J., Gamblin S. J., Codoni G., Macagno A., Jarrossay D., Vachieri S. G., Pinna D., Minola A., Vanzetta F., Silacci C., Fernandez-Rodriguez B. M., Agatic G., Bianchi S., Giacchetto-Sasselli I., Calder L., Sallusto F., Collins P., Haire L. F., Temperton N., Langedijk J. P. M., Skehel J. J., Lanzavecchia A., A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).
Margine I., Hai R., Albrecht R. A., Obermoser G., Harrod A. C., Banchereau J., Palucka K., García-Sastre A., Palese P., Treanor J. J., Krammer F., H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice. J. Virol. 87, 4728–4737 (2013).
Ekiert D. C., Friesen R. H. E., Bhabha G., Kwaks T., Jongeneelen M., Yu W., Ophorst C., Cox F., Korse H. J. W. M., Brandenburg B., Vogels R., Brakenhoff J. P. J., Kompier R., Koldijk M. H., Cornelissen L. A. H. M., Poon L. L. M., Peiris M., Koudstaal W., Wilson I. A., Goudsmit J., A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333, 843–850 (2011).
Jiang N., He J., Weinstein J. A., Penland L., Sasaki S., He X. S., Dekker C. L., Zheng N. Y., Huang M., Sullivan M., Wilson P. C., Greenberg H. B., Davis M. M., Fisher D. S., Quake S. R., Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci. Transl. Med. 5, 171ra19 (2013).
Krammer F., Pica N., Hai R., Tan G. S., Palese P., Hemagglutinin stalk-reactive antibodies are boosted following sequential infection with seasonal and pandemic H1N1 influenza virus in mice. J. Virol. 86, 10302–10307 (2012).
Thomson C. A., Wang Y., Jackson L. M., Olson M., Wang W., Liavonchanka A., Keleta L., Silva V., Diederich S., Jones R. B., Gubbay J., Pasick J., Petric M., Jean F., Allen V. G., Brown E. G., Rini J. M., Schrader J. W., Pandemic H1N1 influenza infection and vaccination in humans induces cross-protective antibodies that target the hemagglutinin stem. Front. Immunol. 3, 87 (2012).
Smith D. J., Lapedes A. S., de Jong J. C., Bestebroer T. M., Rimmelzwaan G. F., Osterhaus A. D. M. E., Fouchier R. A. M., Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).
Krause J. C., Tsibane T., Tumpey T. M., Huffman C. J., Albrecht R., Blum D. L., Ramos I., Fernandez-Sesma A., Edwards K. M., García-Sastre A., Basler C. F., Crowe J. E., Human monoclonal antibodies to pandemic 1957 H2N2 and pandemic 1968 H3N2 influenza viruses. J. Virol. 86, 6334–6340 (2012).
Bernasconi N. L., Traggiai E., Lanzavecchia A., Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).
Corti D., Lanzavecchia A., Broadly neutralizing antiviral antibodies. Annu. Rev. Immunol. 31, 705–742 (2013).
Varani S., Landini M. P., Cytomegalovirus-induced immunopathology and its clinical consequences. Herpesviridae 2, 6 (2011).
Reeves M., Sinclair J., Aspects of human cytomegalovirus latency and reactivation. Curr. Top. Microbiol. Immunol. 325, 297–313 (2008).
Alonso Arias R., Moro-García M. A., Echeverría A., Solano-Jaurrieta J. J., Suárez-García F. M., López-Larrea C., Intensity of the humoral response to cytomegalovirus is associated with the phenotypic and functional status of the immune system. J. Virol. 87, 4486–4495 (2013).
Stowe R. P., Kozlova E. V., Yetman D. L., Walling D. M., Goodwin J. S., Glaser R., Chronic herpesvirus reactivation occurs in aging. Exp. Gerontol. 42, 563–570 (2007).
Krammer F., Margine I., Tan G. S., Pica N., Krause J. C., Palese P., A carboxy-terminal trimerization domain stabilizes conformational epitopes on the stalk domain of soluble recombinant hemagglutinin substrates. PLoS One 7, e43603 (2012).
Hai R., Krammer F., Tan G. S., Pica N., Eggink D., Maamary J., Margine I., Albrecht R. A., Palese P., Influenza viruses expressing chimeric hemagglutinins: Globular head and stalk domains derived from different subtypes. J. Virol. 86, 5774–5781 (2012).
Gardner T. J., Bolovan-Fritts C., Teng M. W., Redmann V., Kraus T. A., Sperling R., Moran T., Britt W., Weinberger L. S., Tortorella D., Development of a high-throughput assay to measure the neutralization capability of anti-cytomegalovirus antibodies. Clin. Vaccine Immunol. 20, 540–550 (2013).
Teng M. W., Bolovan-Fritts C., Dar R. D., Womack A., Simpson M. L., Shenk T., Weinberger L. S., An endogenous accelerator for viral gene expression confers a fitness advantage. Cell 151, 1569–1580 (2012).

Information & Authors


Published In

Science Translational Medicine
Volume 5 | Issue 198
August 2013

Submission history

Received: 23 May 2013
Accepted: 19 June 2013


Request permissions for this article.


We thank the FHS ( for the donation of samples and C. Wang for providing excellent technical support. Funding: M.S.M. was supported by a Canadian Institutes of Health Research Postdoctoral Fellowship. T.J.G. was supported in part by U.S. Public Health Service Institutional Research Training Award T32-AI07647 and a Helmsley Trust Fellowship. F.K. was partially supported by an Erwin Schrödinger Fellowship (J 3232) from the Austrian Science Fund. This work was supported by PATH and by NIH (HHSN26620070010C to P.P. and AI085306 to C.F.B.) and an American Heart Association grant to D.T. Author contributions: All authors were involved in the design of experiments and analysis of data. M.S.M., T.J.G., F.K., and L.C.A. performed the experiments. M.S.M. and P.P. wrote the manuscript. Competing interests: The authors declare that they have no competing interests.



Matthew S. Miller
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Thomas J. Gardner
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Florian Krammer
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Lauren C. Aguado
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Domenico Tortorella
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Christopher F. Basler
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Peter Palese* [email protected]
Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.


Corresponding author. E-mail: [email protected]

Metrics & Citations


Article Usage


Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Age-specific effects of vaccine egg adaptation and immune priming on A(H3N2) antibody responses following influenza vaccination, Journal of Clinical Investigation, 131, 8, (2021).
  2. Influenza immune escape under heterogeneous host immune histories, Trends in Microbiology, (2021).
  3. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting, Science, 354, 6313, (722-726), (2021)./doi/10.1126/science.aag1322
  4. Seeking Help: B Cells Adapting to Flu Variability, Science Translational Medicine, 6, 246, (246ps8-246ps8), (2021)./doi/10.1126/scitranslmed.3008409
  5. Antibody landscapes after influenza virus infection or vaccination, Science, 346, 6212, (996-1000), (2021)./doi/10.1126/science.1256427
  6. Pre-existing heterosubtypic immunity provides a barrier to airborne transmission of influenza viruses, PLOS Pathogens, 17, 2, (e1009273), (2021).
  7. Universally Immune: How Infection Permissive Next Generation Influenza Vaccines May Affect Population Immunity and Viral Spread, Viruses, 13, 9, (1779), (2021).
  8. Differences in Influenza-Specific CD4 T-Cell Mediated Immunity Following Acute Infection Versus Inactivated Vaccination in Children, The Journal of Infectious Diseases, 223, 12, (2164-2173), (2020).
  9. Detection of H1 Swine Influenza A Virus Antibodies in Human Serum Samples by Age Group1, Emerging Infectious Diseases, 26, 9, (2118-2128), (2020).
  10. Imprinting, immunodominance, and other impediments to generating broad influenza immunity, Immunological Reviews, 296, 1, (191-204), (2020).
  11. See more

View Options

Check Access

Log in to view the full text


AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF







Share article link

Share on social media