Advertisement

Tasting with ATP

The savory taste of umami, the sweetness of sugar, and the bitterness of quinine are transduced by type II taste cells. Unlike most other receptor cells, type II taste cells release their neurotransmitter, ATP, through voltage-gated CALHM1 channels instead of neurotransmitter-containing vesicles. Romanov et al. found that the source of ATP was unusual, large mitochondria, closely opposed to clusters of CALHM1 channels within the plasma membrane of type II taste cells. This arrangement enables an alternate method of chemical neurotransmission that does not rely on vesicles.

Abstract

Conventional chemical synapses in the nervous system involve a presynaptic accumulation of neurotransmitter-containing vesicles, which fuse with the plasma membrane to release neurotransmitters that activate postsynaptic receptors. In taste buds, type II receptor cells do not have conventional synaptic features but nonetheless show regulated release of their afferent neurotransmitter, ATP, through a large-pore, voltage-gated channel, CALHM1. Immunohistochemistry revealed that CALHM1 was localized to points of contact between the receptor cells and sensory nerve fibers. Ultrastructural and super-resolution light microscopy showed that the CALHM1 channels were consistently associated with distinctive, large (1- to 2-μm) mitochondria spaced 20 to 40 nm from the presynaptic membrane. Pharmacological disruption of the mitochondrial respiratory chain limited the ability of taste cells to release ATP, suggesting that the immediate source of released ATP was the mitochondrion rather than a cytoplasmic pool of ATP. These large mitochondria may serve as both a reservoir of releasable ATP and the site of synthesis. The juxtaposition of the large mitochondria to areas of membrane displaying CALHM1 also defines a restricted compartment that limits the influx of Ca2+ upon opening of the nonselective CALHM1 channels. These findings reveal a distinctive organelle signature and functional organization for regulated, focal release of purinergic signals in the absence of synaptic vesicles.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Fig. S1. Validation of the CALHM1 antibody.
Fig. S2. Localization of CALHM1 immunoreactivity in taste buds.
Fig. S3. Calcium responses in sensor cells.
Fig. S4. Effect of CBX on Mito-ID fluorescence in living taste cells.
Table S1. Amplitudes of calcium responses in type II taste cells from Fig. 3B.
Movie S1. 3D visualization of the relationship between a type II taste cell and the innervating nerve fiber shown in Fig. 1A.
Movie S2. 3D visualization of mitochondria and taste cell shown in Fig. 1B.
Movie S3. Relationship of atypical and typical mitochondria.
Movie S4. Tubular cristae in atypical mitochondria.

Resources

File (aao1815_movie_s1.mp4)
File (aao1815_movie_s2.mp4)
File (aao1815_movie_s3.mp4)
File (aao1815_movie_s4.mp4)
File (aao1815_sm.pdf)

REFERENCES AND NOTES

1
M. Foster, S. C. Sherrington, A Textbook of Physiology, Part 3 (Macmillan, ed. 7, 1897).
2
A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, The immunological synapse: A molecular machine controlling T cell activation. Science 285, 221–227 (1999).
3
T. E. Finger, V. Danilova, J. Barrows, D. L. Bartel, A. J. Vigers, L. Stone, G. Hellekant, S. C. Kinnamon, ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495–1499 (2005).
4
A. Vandenbeuch, E. D. Larson, C. B. Anderson, S. A. Smith, A. P. Ford, T. E. Finger, S. C. Kinnamon, Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice. J. Physiol. 593, 1113–1125 (2015).
5
A. Vandenbeuch, C. B. Anderson, A. P. Ford, S. E. Smith, T. E. Finger, S. C. Kinnamon, A selective P2X3, P2X2/3 receptor antagonist abolishes responses to all taste stimuli in mice. Chem. Senses 38, A645 (2013).
6
X. Bo, A. Alavi, Z. Xiang, I. Oglesby, A. Ford, G. Burnstock, Localization of ATP-gated P2X2 and P2X3 receptor immunoreactive nerves in rat taste buds. Neuroreport 10, 1107–1111 (1999).
7
R. Yang, A. Montoya, A. Bond, J. Walton, J. C. Kinnamon, Immunocytochemical analysis of P2X2 in rat circumvallate taste buds. BMC Neurosci. 13, 51 (2012).
8
Y. Ishida, S. Ugawa, T. Ueda, T. Yamada, Y. Shibata, A. Hondoh, K. Inoue, Y. Yu, S. Shimada, P2X2- and P2X3-positive fibers in fungiform papillae originate from the chorda tympani but not the trigeminal nerve in rats and mice. J. Comp. Neurol. 514, 131–144 (2009).
9
N. Chaudhari, S. D. Roper, The cell biology of taste. J. Cell Biol. 190, 285–296 (2010).
10
A. L. Huang, X. Chen, M. A. Hoon, J. Chandrashekar, W. Guo, D. Tränkner, N. J. P. Ryba, C. S. Zuker, The cells and logic for mammalian sour taste detection. Nature 442, 934–938 (2006).
11
Y. A. Huang, Y. Maruyama, R. Stimac, S. D. Roper, Presynaptic (type III) cells in mouse taste buds sense sour (acid) taste. J. Physiol. 586, 2903–2912 (2008).
12
T. R. Clapp, K. F. Medler, S. Damak, R. F. Margolskee, S. C. Kinnamon, Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol. 4, 7 (2006).
13
K. F. Medler, R. F. Margolskee, S. C. Kinnamon, Electrophysiological characterization of voltage-gated currents in defined taste cell types of mice. J. Neurosci. 23, 2608–2617 (2003).
14
R. Yang, H. H. Crowley, M. E. Rock, J. C. Kinnamon, Taste cells with synapses in rat circumvallate papillae display SNAP-25-like immunoreactivity. J. Comp. Neurol. 424, 205–215 (2000).
15
R. Yang, S. Tabata, H. H. Crowley, R. F. Margolskee, J. C. Kinnamon, Ultrastructural localization of gustducin immunoreactivity in microvilli of type II taste cells in the rat. J. Comp. Neurol. 425, 139–151 (2000).
16
R. A. Romanov, O. A. Rogachevskaja, M. F. Bystrova, P. Jiang, R. F. Margolskee, S. S. Kolesnikov, Afferent neurotransmission mediated by hemichannels in mammalian taste cells. EMBO J. 26, 657–667 (2007).
17
Y.-J. Huang, Y. Maruyama, G. Dvoryanchikov, E. Pereira, N. Chaudhari, S. D. Roper, The role of pannexin 1 hemichannels in ATP release and cell–cell communication in mouse taste buds. Proc. Natl. Acad. Sci. U.S.A. 104, 6436–6441 (2007).
18
Y. Murata, T. Yasuo, R. Yoshida, K. Obata, Y. Yanagawa, R. F. Margolskee, Y. Ninomiya, Action potential–enhanced ATP release from taste cells through hemichannels. J. Neurophysiol. 104, 896–901 (2010).
19
A. Taruno, I. Matsumoto, Z. Ma, P. Marambaud, J. K. Foskett, How do taste cells lacking synapses mediate neurotransmission? CALHM1, a voltage-gated ATP channel. BioEssays 35, 1111–1118 (2013).
20
A. Taruno, V. Vingtdeux, M. Ohmoto, Z. Ma, G. Dvoryanchikov, A. Li, L. Adrien, H. Zhao, S. Leung, M. Abernethy, J. Koppel, P. Davies, M. M. Civan, N. Chaudhari, I. Matsumoto, G. Hellekant, M. G. Tordoff, P. Marambaud, J. K. Foskett, CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495, 223–226 (2013).
21
R. A. Romanov, M. F. Bystrova, O. A. Rogachevskaya, V. B. Sadovnikov, V. I. Shestopalov, S. S. Kolesnikov, The ATP permeability of pannexin 1 channels in a heterologous system and in mammalian taste cells is dispensable. J. Cell Sci. 125, 5514–5523 (2012).
22
R. A. Romanov, O. A. Rogachevskaja, A. A. Khokhlov, S. S. Kolesnikov, Voltage dependence of ATP secretion in mammalian taste cells. J. Gen. Physiol. 132, 731–744 (2008).
23
R. Corriden, P. A. Insel, Basal release of ATP: An autocrine-paracrine mechanism for cell regulation. Sci. Signal. 3, re1 (2010).
24
S. Kusumakshi, A. Voigt, S. Hübner, I. Hermans-Borgmeyer, A. Ortalli, M. Pyrski, J. Dörr, F. Zufall, V. Flockerzi, W. Meyerhof, J. P. Montmayeur, U. Boehm, A binary genetic approach to characterize TRPM5 cells in mice. Chem. Senses 40, 413–425 (2015).
25
N. Gao, M. Lu, F. Echeverri, B. Laita, D. Kalabat, M. E. Williams, P. Hevezi, A. Zlotnik, B. D. Moyer, Voltage-gated sodium channels in taste bud cells. BMC Neurosci. 10, 20 (2009).
26
S. M. Royer, J. C. Kinnamon, Ultrastructure of mouse foliate taste buds: Synaptic and nonsynaptic interactions between taste cells and nerve fibers. J. Comp. Neurol. 270, 11–24 58-9 (1988).
27
G. A. Perkins, M. H. Ellisman, D. A. Fox, Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: Bioenergetic and functional implications. Mol. Vis. 9, 60–73 (2003).
28
C. D. Roberts, G. Dvoryanchikov, S. D. Roper, N. Chaudhari, Interaction between the second messengers cAMP and Ca2+ in mouse presynaptic taste cells. J. Physiol. 587, 1657–1668 (2009).
29
M. F. Bystrova, R. A. Romanov, O. A. Rogachevskaja, G. D. Churbanov, S. S. Kolesnikov, Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells. J. Cell Sci. 123, 972–982 (2010).
30
E. B. Trexler, F. F. Bukauskas, M. V. L. Bennett, T. A. Bargiello, V. K. Verselis, Rapid and direct effects of pH on connexins revealed by the connexin46 hemichannel preparation. J. Gen. Physiol. 113, 721–742 (1999).
31
L. Bao, S. Samuels, S. Locovei, E. R. Macagno, K. J. Muller, G. Dahl, Innexins form two types of channels. FEBS Lett. 581, 5703–5708 (2007).
32
G. Dahl, K. J. Muller, Innexin and pannexin channels and their signaling. FEBS Lett. 588, 1396–1402 (2014).
33
G. A. Perkins, C. W. Renken, T. G. Frey, M. H. Ellisman, Membrane architecture of mitochondria in neurons of the central nervous system. J. Neurosci. Res. 66, 857–865 (2001).
34
M. M. Giarmarco, W. M. Cleghorn, S. R. Sloat, J. B. Hurley, S. E. Brockerhoff, Mitochondria maintain distinct Ca2+ pools in cone photoreceptors. J. Neurosci. 37, 2061–2072 (2017).
35
C. A. Mannella, Structure and dynamics of the mitochondrial inner membrane cristae. Biochim. Biophys. Acta 1763, 542–548 (2006).
36
R. Rizzuto, D. De Stefani, A. Raffaello, C. Mammucari, Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566–578 (2012).
37
M. Salvi, C. Fiore, V. Battaglia, M. Palermo, D. Armanini, A. Toninello, Carbenoxolone induces oxidative stress in liver mitochondria, which is responsible for transition pore opening. Endocrinology 146, 2306–2312 (2005).
38
T. Azarashvili, Y. Baburina, D. Grachev, O. Krestinina, Y. Evtodienko, R. Stricker, G. Reiser, Calcium-induced permeability transition in rat brain mitochondria is promoted by carbenoxolone through targeting connexin43. Am. J. Physiol. Cell Physiol. 300, C707–C720 (2011).
39
S. C. Kinnamon, T. E. Finger, A taste for ATP: Neurotransmission in taste buds. Front. Cell. Neurosci. 7, 264 (2013).
40
Z. Ma, A. P. Siebert, K.-H. Cheung, R. J. Lee, B. Johnson, A. S. Cohen, V. Vingtdeux, P. Marambaud, J. K. Foskett, Calcium homeostasis modulator 1 (CALHM1) is the pore-forming subunit of an ion channel that mediates extracellular Ca2+ regulation of neuronal excitability. Proc. Natl. Acad. Sci. U.S.A. 109, E1963–E1971 (2012).
41
A. L. Hodgkin, The ionic basis of electrical activity in nerve and muscle. Biol. Res. 26, 339–409 (1951).
42
R. A. Romanov, S. S. Kolesnikov, Electrophysiologically identified subpopulations of taste bud cells. Neurosci. Lett. 395, 249–254 (2006).
43
Z. Ma, W. T. Saung, J. K. Foskett, Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells. J. Neurophysiol. 117, 1865–1876 (2017).
44
A. Bigiani, Calcium homeostasis modulator 1-like currents in rat fungiform taste cells expressing amiloride-sensitive sodium currents. Chem. Senses 42, 343–359 (2017).
45
L. P. Shutov, M.-S. Kim, P. R. Houlihan, Y. V. Medvedeva, Y. M. Usachev, Mitochondria and plasma membrane Ca2+-ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons. J. Physiol. 591, 2443–2462 (2013).
46
C. Ledderose, Y. Bao, M. Lidicky, J. Zipperle, L. Li, K. Strasser, N. I. Shapiro, W. G. Junger, Mitochondria are gate-keepers of T cell function by producing the ATP that drives purinergic signaling. J. Biol. Chem. 289, 25936–25945 (2014).
47
E. A. Schwartz, Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. Science 238, 350–355 (1987).
48
G. B. Richerson, Y. Wu, Dynamic equilibrium of neurotransmitter transporters: Not just for reuptake anymore. J. Neurophysiol. 90, 1363–1374 (2003).
49
U. Dreses-Werringloer, J.-C. Lambert, V. Vingtdeux, H. Zhao, H. Vais, A. Siebert, A. Jain, J. Koppel, A. Rovelet-Lecrux, D. Hannequin, F. Pasquier, D. Galimberti, E. Scarpini, D. Mann, C. Lendon, D. Campion, P. Amouyel, P. Davies, J. K. Foskett, F. Campagne, P. Marambaud, A polymorphism in CALHM1 influences Ca2+ homeostasis, Aβ levels, and Alzheimer’s disease risk. Cell 133, 1149–1161 (2008).
50
V. Vingtdeux, E. H. Chang, S. A. Frattini, H. Zhao, P. Chandakkar, L. Adrien, J. J. Strohl, E. L. Gibson, M. Ohmoto, I. Matsumoto, P. T. Huerta, P. Marambaud, CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice. Sci. Rep. 6, 24250 (2016).
51
U. Dreses-Werringloer, V. Vingtdeux, H. Zhao, P. Chandakkar, P. Davies, P. Marambaud, CALHM1 controls the Ca2+-dependent MEK, ERK, RSK and MSK signaling cascade in neurons. J. Cell Sci. 126, 1199–1206 (2013).
52
N. Ohno, G. J. Kidd, D. Mahad, S. Kiryu-Seo, A. Avishai, H. Komuro, B. D. Trapp, Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J. Neurosci. 31, 7249–7258 (2011).
53
T. J. Deerinck, E. A. Bushong, V. Lev-Ram, X. Shu, R. Y. Tsien, M. H. Ellisman, Enhancing serial block-face scanning electron microscopy to enable high resolution 3-D nanohistology of cells and tissues. Microsc. Microanal. 16, 1138–1139 (2010).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science Signaling
Volume 11 | Issue 529
May 2018

Submission history

Received: 23 June 2017
Accepted: 12 April 2018

Permissions

Request permissions for this article.

Acknowledgments

We thank N. Shultz and M. Li for assistance with immunohistochemistry, R. Russell and R. K. Johnson for segmentations and reconstructions from sbfSEM data, and S. Fore (Carl Zeiss Microscopy, LLC) for assistance in acquiring the Airyscan images. We also appreciate the following for review of this manuscript at various stages in its preparation and finalization: F. A. Chaudhry (University of Oslo, Oslo, Norway), K. Beam and S. C. Kinnamon (University of Colorado School of Medicine), and E. Liman (University of Southern California). Funding: S.S.K. was supported by the Russian Academy of Sciences (Program #7) and the Russian Foundation for Basic Research (grant no. 13-04-40082). I.A. was supported by the Swedish Research Council, the Bertil Hallsten Research Foundation, the Jeassons Foundation, the Strategic Regeneration Foundation, and the Knut and Alice Wallenberg Foundation (CLICK). T.H. was funded by the Swedish Research Council, the Swedish Brain Foundation, the Novo Nordisk Foundation, the Petrus and Augusta Hedlunds Foundation, a European Research Council (ERC) Advanced Grant (“Secret-Cells,” ERC-AdG-2015-695136), and the European Commission Integrated Project “PAINCAGE.” R.A.R. was a European Molecular Biology Organization (EMBO) long-term research fellow (ALTF 596-2014) co-funded by the European Commission FP7 (Marie Curie Actions, EMBOCOFUND2012, GA-2012-600394). R.A.R. was also supported by the Ministry of Education and Science of the Russian Federation (agreement no. 14.575.21.0074 with Immanuel Kant Baltic Federal University; project leader, V. Kasymov). This study was supported by grants from the National Institute for Deafness and Communicative Disorders of the NIH (USA) (to T.E.F., R.S.L., B.H., R.Y., G.J.K., and J.C.K.), grants 1R21DC013186 and R01DC014728 (to T.E.F.), and grant P30DC004657 to D. Restrepo (University of Colorado School of Medicine). P.M. was supported by a grant from the National Institute on Aging of the NIH (R01AG042508). Author contributions: S.S.K., T.E.F., and R.A.R. designed the study. R.A.R., T.E.F., and R.Y. performed immunostaining. R.A.R. performed calcium imaging and electrophysiological experiments. R.A.R., O.A.R., and M.F.B. performed experiments with cellular ATP and ATP/ADP sensors. H.Z. and P.M. developed and characterized the antibody against CALHM1. V.V.R., T.E.F., B.H., R.S.L., R.Y., L.E.S., G.J.K., A.L., and J.C.K. performed EM experiments and made 3D reconstructions. G.D.C. and O.A.R. performed experiments with effects of CBX. R.A.R., T.E.F., I.A., T.H., P.M., and S.S.K. analyzed data and contributed to writing the paper. All authors commented on the manuscript and approved its submission. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All the data required to evaluate the conclusions in the paper are present in the paper or the Supplementary Materials. The Calmh1 knockout mice require a material transfer agreement from P. Marambaud (The Feinstein Institute for Medical Research).

Authors

Affiliations

Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia.
Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria.
Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
Robert S. Lasher
Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA.
Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA.
Logan E. Savidge
Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA.
Adam Lawson
Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA.
Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia.
Haitian Zhao
Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia.
United Pushchino Center for Electron Microscopy, Pushchino, Moscow Region 142290, Russia.
Marina F. Bystrova
Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia.
Gleb D. Churbanov
Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia.
Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria.
Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria.
Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden.
Ruibiao Yang
Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA.
Grahame J. Kidd
Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, and 3D-Electron Microscopy, Renovo Neural Inc., Cleveland, OH 44195, USA.
Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
John C. Kinnamon
Rocky Mountain Taste and Smell Center, Department of Biological Sciences, University of Denver, Denver, CO 80210, USA.
Stanislav S. Kolesnikov*, [email protected]
Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia.
Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA.

Funding Information

European Research Council: ERC-AdG-2015-695136
Swedish Brain Foundation
EMBO: ALTF 596-2014
Swedish Brain Foundation
Knut and Alice Wallenberg foundation
Bertil Hallsten Research Foundation
Jeassons Foundation
Petrus and Augusta Hedlunds Foundation
European Commission Integrated Project: GA-2012-600394
Novo Nordisk Foundation
Novo Nordisk Foundation
European Commission Integrated Project

Notes

*
Co-senior authors.
Corresponding author. Email: [email protected] (T.E.F.); [email protected] (S.S.K.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. GAD65Cre Drives Reporter Expression in Multiple Taste Cell Types, Chemical Senses, 46, (2021).https://doi.org/10.1093/chemse/bjab033
    Crossref
  2. Slow recovery from the inactivation of voltage-gated sodium channel Nav1.3 in mouse taste receptor cells, Pflügers Archiv - European Journal of Physiology, 473, 6, (953-968), (2021).https://doi.org/10.1007/s00424-021-02563-w
    Crossref
  3. Lung epithelial endoplasmic reticulum and mitochondrial 3D ultrastructure: a new frontier in lung diseases, Histochemistry and Cell Biology, 155, 2, (291-300), (2021).https://doi.org/10.1007/s00418-020-01950-1
    Crossref
  4. Cellular diversity and regeneration in taste buds, Current Opinion in Physiology, 20, (146-153), (2021).https://doi.org/10.1016/j.cophys.2021.01.003
    Crossref
  5. Is there a role for GABA in peripheral taste processing, Current Opinion in Physiology, 20, (105-111), (2021).https://doi.org/10.1016/j.cophys.2021.01.001
    Crossref
  6. On the molecular nature of large-pore channels, Journal of Molecular Biology, 433, 17, (166994), (2021).https://doi.org/10.1016/j.jmb.2021.166994
    Crossref
  7. Variation in taste ganglion neuron morphology: insights into taste function and plasticity, Current Opinion in Physiology, 20, (134-139), (2021).https://doi.org/10.1016/j.cophys.2020.12.011
    Crossref
  8. Taste Receptor Signaling, , (2021).https://doi.org/10.1007/164_2021_442
    Crossref
  9. Sour taste: receptors, cells and circuits, Current Opinion in Physiology, 20, (8-15), (2021).https://doi.org/10.1016/j.cophys.2020.12.006
    Crossref
  10. Bitter, sweet, and umami signaling in taste cells: it’s not as simple as we thought, Current Opinion in Physiology, 20, (159-164), (2021).https://doi.org/10.1016/j.cophys.2021.01.010
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media