Advertisement
Research Article
Immunology

Interferon-β Therapy Against EAE Is Effective Only When Development of the Disease Depends on the NLRP3 Inflammasome

Science Signaling22 May 2012Vol 5, Issue 225p. ra38DOI: 10.1126/scisignal.2002767

Inflammasome Dependency Determines Therapy?

Multiple sclerosis (MS) is an inflammatory autoimmune disease in which the myelin sheath surrounding axons is destroyed by cells of the immune system. MS and experimental autoimmune encephalitis (EAE), an animal model of MS, can be ameliorated by interferon-β (IFN-β); however, IFN-β is not effective in all cases. Inoue et al. determined a mechanism by which IFN-β decreases the severity of EAE in mice by inhibiting the activity of the NLRP3 inflammasome. However, the authors also characterized a form of EAE that was independent of NLRP3 and was refractory to IFN-β. Given other reports that have suggested the involvement of inflammasomes in MS, it will be important to investigate whether patients who fail to respond to IFN-β have inflammasome-independent disease.

Abstract

Interferon-β (IFN-β) is widely used to treat multiple sclerosis (MS), and its efficacy was demonstrated in the setting of experimental autoimmune encephalomyelitis (EAE), an animal model of MS; however, IFN-β is not effective in treating all cases of MS. Here, we demonstrate that signaling by IFNAR (the shared receptor for IFN-α and IFN-β) on macrophages inhibits activation of Rac1 and the generation of reactive oxygen species (ROS) through suppressor of cytokine signaling 1 (SOCS1). The inhibition of Rac1 activation and ROS generation suppressed the activity of the Nod-like receptor (NLR) family, pyrin domain–containing 3 (NLRP3) inflammasome, which resulted in attenuated EAE pathogenicity. We further found that two subsets of EAE could be defined on the basis of their dependency on the NLRP3 inflammasome and that IFN-β was not an effective therapy when EAE was induced in an NLRP3 inflammasome–independent fashion. Thus, our study demonstrates a previously uncharacterized signaling pathway that is involved in the suppression of EAE by IFN-β and characterizes NLRP3-independent EAE, which cannot be treated with IFN-β.

Get full access to this article

View all available purchase options and get full access to this article.

Already a subscriber or AAAS Member?

Supplementary Material

Summary

Fig. S1. IFNAR signaling suppresses activation of the NLRP3 inflammasome.
Fig. S2. IFNAR signaling does not inhibit pro–IL-1β production.
Fig. S3. IFNAR signaling inhibits the formation of caspase-1 foci.
Fig. S4. IFNAR signaling does not affect expression of Nlrp3, Asc, Casp-1, and Txnip or the abundance of P2X7R and CD39, but does induce ROS generation.
Fig. S5. ROS generated by mitochondria, but not by NADPH oxidase, is suppressed by type I IFN.
Fig. S6. Inhibition of Rac1 inhibits the production of IL-1β and ROS, but does not affect the expression of Tnf, Il6, or Il1b.
Fig. S7. Involvement of SOCS1 in IFNAR signaling.
Fig. S8. Events upstream of the NLRP3 inflammasome are intact in NLRP3 inflammasome–deficient macrophages.
Fig. S9. Serum IL-18 concentrations 9 days after immunization.
Fig. S10. Evaluation of rIFN-β efficacy in cell culture.
Fig. S11. IFNAR signaling suppresses NLRP3 inflammasome activity in vivo.
Fig. S12. NLRP3 inflammasome–dependent and –independent EAE.
Fig. S13. Inflammasome activity in mice with passive EAE.
Table S1. Sequences of primers used for qPCR analysis.

Resources

File (5_ra38_sm.pdf)

References and Notes

1
Denic A., Johnson A. J., Bieber A. J., Warrington A. E., Rodriguez M., Pirko I., The relevance of animal models in multiple sclerosis research. Pathophysiology 18, 21–29 (2011).
2
Shinohara M. L., Kim J. H., Garcia V. A., Cantor H., Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: Role of intracellular osteopontin. Immunity 29, 68–78 (2008).
3
Guo B., Chang E. Y., Cheng G., The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J. Clin. Invest. 118, 1680–1690 (2008).
4
Hartung H. P., Bar-Or A., Zoukos Y., What do we know about the mechanism of action of disease-modifying treatments in MS? J. Neurol. 251 (suppl. 5), v12–v29 (2004).
5
Markowitz C. E., Interferon-β: Mechanism of action and dosing issues. Neurology 68, S8–S11 (2007).
6
Prinz M., Schmidt H., Mildner A., Knobeloch K. P., Hanisch U. K., Raasch J., Merkler D., Detje C., Gutcher I., Mages J., Lang R., Martin R., Gold R., Becher B., Bruck W., Kalinke U., Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28, 675–686 (2008).
7
Sweeney C. M., Lonergan R., Basdeo S. A., Kinsella K., Dungan L. S., Higgins S. C., Kelly P. J., Costelloe L., Tubridy N., Mills K. H., Fletcher J. M., IL-27 mediates the response to IFN-β therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav. Immun. 25, 1170–1181 (2011).
8
Guarda G., Braun M., Staehli F., Tardivel A., Mattmann C., Förster I., Farlik M., Decker T., Du Pasquier R. A., Romero P., Tschopp J., Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34, 213–223 (2011).
9
Mariathasan S., Weiss D. S., Newton K., McBride J., O’Rourke K., Roose-Girma M., Lee W. P., Weinrauch Y., Monack D. M., Dixit V. M., Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).
10
Gross O., Poeck H., Bscheider M., Dostert C., Hannesschläger N., Endres S., Hartmann G., Tardivel A., Schweighoffer E., Tybulewicz V., Mocsai A., Tschopp J., Ruland J., Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459, 433–436 (2009).
11
Martinon F., Petrilli V., Mayor A., Tardivel A., Tschopp J., Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).
12
Halle A., Hornung V., Petzold G. C., Stewart C. R., Monks B. G., Reinheckel T., Fitzgerald K. A., Latz E., Moore K. J., Golenbock D. T., The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9, 857–865 (2008).
13
Taniguchi T., Takaoka A., A weak signal for strong responses: Interferon-α/β revisited. Nat. Rev. Mol. Cell Biol. 2, 378–386 (2001).
14
Gresser I., Biologic effects of interferons. J. Invest. Dermatol. 95, 66S–71S (1990).
15
Miao E. A., Leaf I. A., Treuting P. M., Mao D. P., Dors M., Sarkar A., Warren S. E., Wewers M. D., Aderem A., Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).
16
Martinon F., Mayor A., Tschopp J., The inflammasomes: Guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).
17
Zhou R., Tardivel A., Thorens B., Choi I., Tschopp J., Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).
18
Kaczmarek E., Koziak K., Sévigny J., Siegel J. B., Anrather J., Beaudoin A. R., Bach F. H., Robson S. C., Identification and characterization of CD39/vascular ATP diphosphohydrolase. J. Biol. Chem. 271, 33116–33122 (1996).
19
Tschopp J., Schroder K., NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).
20
Zhou R., Yazdi A. S., Menu P., Tschopp J., A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).
21
Murthy S., Ryan A., He C., Mallampalli R. K., Carter A. B., Rac1-mediated mitochondrial H2O2 generation regulates MMP-9 gene expression in macrophages via inhibition of SP-1 and AP-1. J. Biol. Chem. 285, 25062–25073 (2010).
22
De Sepulveda P., Ilangumaran S., Rottapel R., Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J. Biol. Chem. 275, 14005–14008 (2000).
23
Dorhoi A., Nouailles G., Jörg S., Hagens K., Heinemann E., Pradl L., Oberbeck-Müller D., Duque-Correa M. A., Reece S. T., Ruland J., Brosch R., Tschopp J., Gross O., Kaufmann S. H., Activation of the NLRP3 inflammasome by Mycobacterium tuberculosis is uncoupled from susceptibility to active tuberculosis. Eur. J. Immunol. 42, 374–384 (2012).
24
Kumar H., Kumagai Y., Tsuchida T., Koenig P. A., Satoh T., Guo Z., Jang M. H., Saitoh T., Akira S., Kawai T., Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal β-glucan. J. Immunol. 183, 8061–8067 (2009).
25
Kankkunen P., Teirila L., Rintahaka J., Alenius H., Wolff H., Matikainen S., (1,3)-β-Glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. J. Immunol. 184, 6335–6342 (2010).
26
Gris D., Ye Z., Iocca H. A., Wen H., Craven R. R., Gris P., Huang M., Schneider M., Miller S. D., Ting J. P., NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 185, 974–981 (2010).
27
Shaw P. J., Lukens J. R., Burns S., Chi H., McGargill M. A., Kanneganti T. D., Cutting edge: Critical role for PYCARD/ASC in the development of experimental autoimmune encephalomyelitis. J. Immunol. 184, 4610–4614 (2010).
28
Furlan R., Martino G., Galbiati F., Poliani P. L., Smiroldo S., Bergami A., Desina G., Comi G., Flavell R., Su M. S., Adorini L., Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J. Immunol. 163, 2403–2409 (1999).
29
Stromnes I. M., Cerretti L. M., Liggitt D., Harris R. A., Goverman J. M., Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med. 14, 337–342 (2008).
30
Axtell R. C., de Jong B. A., Boniface K., van der Voort L. F., Bhat R., De Sarno P., Naves R., Han M., Zhong F., Castellanos J. G., Mair R., Christakos A., Kolkowitz I., Katz L., Killestein J., Polman C. H., de Waal Malefyt R., Steinman L., Raman C., T helper type 1 and 17 cells determine efficacy of interferon-β in multiple sclerosis and experimental encephalomyelitis. Nat. Med. 16, 406–412 (2010).
31
Furlan R., Filippi M., Bergami A., Rocca M. A., Martinelli V., Poliani P. L., Grimaldi L. M., Desina G., Comi G., Martino G., Peripheral levels of caspase-1 mRNA correlate with disease activity in patients with multiple sclerosis; a preliminary study. J. Neurol. Neurosurg. Psychiatry 67, 785–788 (1999).
32
Ming X., Li W., Maeda Y., Blumberg B., Raval S., Cook S. D., Dowling P. C., Caspase-1 expression in multiple sclerosis plaques and cultured glial cells. J. Neurol. Sci. 197, 9–18 (2002).
33
Huang W. X., Huang P., Hillert J., Increased expression of caspase-1 and interleukin-18 in peripheral blood mononuclear cells in patients with multiple sclerosis. Mult. Scler. 10, 482–487 (2004).
34
Shinohara M. L., Lu L., Bu J., Werneck M. B., Kobayashi K. S., Glimcher L. H., Cantor H., Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells. Nat. Immunol. 7, 498–506 (2006).

Information & Authors

Information

Published In

Science Signaling
Volume 5 | Issue 225
May 2012

Submission history

Received: 12 December 2011
Accepted: 4 May 2012

Permissions

Request permissions for this article.

Acknowledgments

We thank G. Kelsoe, T. Tedder, M. Krangel, D. Gunn, C. Gordy, and K. Kobayashi for critical discussions and reading of the manuscript. Funding: This study was funded by the National Multiple Sclerosis Society (RG4536-A-1) to M.L.S., the NIH (AI089756) to K.L.W., and a Methusalem grant from the Flemish government (BOF09/01M00709) to P.V. Author contributions: M.I. and M.L.S. designed the study, analyzed the data, and wrote the manuscript; M.I. performed most of the experiments; K.L.W. and P.V. contributed critical reagents and discussed the data; T.O. contributed microscope analyses; J.V.R. performed the experiments with S. typhimurium and p47phox-deficient cells; and E.A.M. analyzed the data. Competing interests: M.I. and M.L.S. have applied for a patent (US #13/347,233) based on this work. Data and materials availability: Use of the Nlrp3−/− and Asc−/− mice requires the signing of a materials transfer agreement (MTA).

Authors

Affiliations

Makoto Inoue
Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
Kristi L. Williams
Departments of Medicine and Cardiology, Duke University Medical Center, Durham, NC 27710, USA.
Timothy Oliver*
Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
Peter Vandenabeele
Department for Molecular Biomedical Research, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent (Zwijnaarde), Belgium.
Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent (Zwijnaarde), Belgium.
Jayant V. Rajan
Institute for Systems Biology, Seattle, WA 98103, USA.
Department of Medicine, University of Washington, Seattle, WA 98195, USA.
Edward A. Miao
Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.
Mari L. Shinohara [email protected]
Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.

Notes

*
Deceased.
†To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Early-life-trauma triggers interferon-β resistance and neurodegeneration in a multiple sclerosis model via downregulated β1-adrenergic signaling, Nature Communications, 12, 1, (2021).https://doi.org/10.1038/s41467-020-20302-0
    Crossref
  2. The involvement of NLRP3 inflammasome in the treatment of neurodegenerative diseases, Biomedicine & Pharmacotherapy, 138, (111428), (2021).https://doi.org/10.1016/j.biopha.2021.111428
    Crossref
  3. Caspase-1 inhibits IFN-β production via cleavage of cGAS during M. bovis infection, Veterinary Microbiology, 258, (109126), (2021).https://doi.org/10.1016/j.vetmic.2021.109126
    Crossref
  4. Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis, Pharmacology & Therapeutics, 227, (107880), (2021).https://doi.org/10.1016/j.pharmthera.2021.107880
    Crossref
  5. Targeting microglial autophagic degradation in NLRP3 inflammasome-mediated neurodegenerative diseases, Ageing Research Reviews, 65, (101202), (2021).https://doi.org/10.1016/j.arr.2020.101202
    Crossref
  6. Inflammatory Cytokines at the Summits of Pathological Signal Cascades in Brain Diseases, Science Signaling, 6, 258, (pe3-pe3), (2021)./doi/10.1126/scisignal.2003898
    Abstract
  7. Science Signaling Podcast: 22 May 2012, Science Signaling, 5, 225, (pc11-pc11), (2021)./doi/10.1126/scisignal.2003176
    Abstract
  8. Selected Clostridia Strains from The Human Microbiota and their Metabolite, Butyrate, Improve Experimental Autoimmune Encephalomyelitis, Neurotherapeutics, (2021).https://doi.org/10.1007/s13311-021-01016-7
    Crossref
  9. The Role of the Inflammasome in Neurodegenerative Diseases, Molecules, 26, 4, (953), (2021).https://doi.org/10.3390/molecules26040953
    Crossref
  10. Possible biomarkers of therapy effective, Russian neurological journal, 26, 1, (4-14), (2021).https://doi.org/10.30629/2658-7947-2021-26-1-4-14
    Crossref
  11. See more
Loading...

View Options

Get Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media