No access
Research Article
Posttranslational Modification

Proteome-Wide Mapping of the Drosophila Acetylome Demonstrates a High Degree of Conservation of Lysine Acetylation

Science Signaling
26 Jul 2011
Vol 4, Issue 183
p. ra48

Age of the Acetylome

Acetylation and phosphorylation are regulatory posttranslational modifications that occur on proteins. With proteome-wide data in divergent species, insights regarding the evolution of these two regulatory processes can be revealed. Weinert et al. report the proteome-wide analysis of acetylated proteins in the fruit fly. Comparing the data on acetylated proteins in humans and flies with proteome sequences of nematodes and zebrafish indicated that acetylated sites were more conserved than were nonacetylated sites, and comparison of the human and fly acetylomes with their phosphoproteomes indicated that acetylation sites were more conserved than were phosphorylation sites. Acetylation intersected with another posttranslational modification, ubiquitylation: Acetylation occurred on one-third of human ubiquitin-conjugating E2 enzymes and influenced the activity of these enzymes, suggesting that acetylation provides another regulatory layer for this other type of posttranslational modification.


Posttranslational modification of proteins by acetylation and phosphorylation regulates most cellular processes in living organisms. Surprisingly, the evolutionary conservation of phosphorylated serine and threonine residues is only marginally higher than that of unmodified serines and threonines. With high-resolution mass spectrometry, we identified 1981 lysine acetylation sites in the proteome of Drosophila melanogaster. We used data sets of experimentally identified acetylation and phosphorylation sites in Drosophila and humans to analyze the evolutionary conservation of these modification sites between flies and humans. Site-level conservation analysis revealed that acetylation sites are highly conserved, significantly more so than phosphorylation sites. Furthermore, comparison of lysine conservation in Drosophila and humans with that in nematodes and zebrafish revealed that acetylated lysines were significantly more conserved than were nonacetylated lysines. Bioinformatics analysis using Gene Ontology terms suggested that the proteins with conserved acetylation control cellular processes such as protein translation, protein folding, DNA packaging, and mitochondrial metabolism. We found that acetylation of ubiquitin-conjugating E2 enzymes was evolutionarily conserved, and mutation of a conserved acetylation site impaired the function of the human E2 enzyme UBE2D3. This systems-level analysis of comparative posttranslational modification showed that acetylation is an anciently conserved modification and suggests that phosphorylation sites may have evolved faster than acetylation sites.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material


Fig. S1. Functional annotation of Drosophila and human acetylomes.
Fig. S2. Conservation of serine and threonine phosphorylation sites to either serine or threonine.
Fig. S3. Summary of acetylation sites identified in E2-conjugating enzymes.
Fig. S4. Sequence alignment of human E2 ubiquitin-conjugating enzymes.
Fig. S5. Identification of UBC4 Lys9 acetylation in S. cerevisiae.
Fig. S6. Identification of in vivo UBE2D3 Lys8 acetylation in human cells.
Fig. S7. Confirmation of Lys8 acetylation in recombinant UBE2D3 purified from E. coli.
Fig. S8. Effect of UBE2D3 Lys8 acetylation on ubiquitin thiolester formation.
Fig. S9. Rescue of growth sensitivity in S. cerevisiae ubc4 mutant cells.
Definitions of the columns for Tables S1 to S3
Details regarding data availability
Table S1. List of Drosophila in vivo acetylation sites.
Table S2. Drosophila acetylated lysine conservation.
Table S3. Human acetylated lysine conservation.


File (4_ra48_sm.pdf)
File (

References and Notes

Yang X. J., Seto E., HATs and HDACs: From structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26, 5310–5318 (2007).
Close P., Creppe C., Gillard M., Ladang A., Chapelle J. P., Nguyen L., Chariot A., The emerging role of lysine acetylation of non-nuclear proteins. Cell. Mol. Life Sci. 67, 1255–1264 (2010).
Mack G. S., To selectivity and beyond. Nat. Biotechnol. 28, 1259–1266 (2010).
Mellert H. S., McMahon S. B., Biochemical pathways that regulate acetyltransferase and deacetylase activity in mammalian cells. Trends Biochem. Sci. 34, 571–578 (2009).
Imai S., Guarente L., Ten years of NAD-dependent SIR2 family deacetylases: Implications for metabolic diseases. Trends Pharmacol. Sci. 31, 212–220 (2010).
Choudhary C., Mann M., Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11, 427–439 (2010).
Choudhary C., Kumar C., Gnad F., Nielsen M. L., Rehman M., Walther T. C., Olsen J. V., Mann M., Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).
Tan C. S., Bodenmiller B., Pasculescu A., Jovanovic M., Hengartner M. O., Jørgensen C., Bader G. D., Aebersold R., Pawson T., Linding R., Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci. Signal. 2, ra39 (2009).
Gnad F., Forner F., Zielinska D. F., Birney E., Gunawardena J., Mann M., Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria. Mol. Cell. Proteomics 9, 2642–2653 (2010).
Landry C. R., Levy E. D., Michnick S. W., Weak functional constraints on phosphoproteomes. Trends Genet. 25, 193–197 (2009).
Bodenmiller B., Malmstrom J., Gerrits B., Campbell D., Lam H., Schmidt A., Rinner O., Mueller L. N., Shannon P. T., Pedrioli P. G., Panse C., Lee H. K., Schlapbach R., Aebersold R., PhosphoPep—A phosphoproteome resource for systems biology research in Drosophila Kc167 cells. Mol. Syst. Biol. 3, 139 (2007).
Zhai B., Villén J., Beausoleil S. A., Mintseris J., Gygi S. P., Phosphoproteome analysis of Drosophila melanogaster embryos. J. Proteome Res. 7, 1675–1682 (2008).
Hilger M., Bonaldi T., Gnad F., Mann M., Systems-wide analysis of a phosphatase knock-down by quantitative proteomics and phosphoproteomics. Mol. Cell. Proteomics 8, 1908–1920 (2009).
Peterson K. J., Lyons J. B., Nowak K. S., Takacs C. M., Wargo M. J., McPeek M. A., Estimating metazoan divergence times with a molecular clock. Proc. Natl. Acad. Sci. U.S.A. 101, 6536–6541 (2004).
Olsen J. V., Macek B., Lange O., Makarov A., Horning S., Mann M., Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 4, 709–712 (2007).
Olsen J. V., Vermeulen M., Santamaria A., Kumar C., Miller M. L., Jensen L. J., Gnad F., Cox J., Jensen T. S., Nigg E. A., Brunak S., Mann M., Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3 (2010).
Wang Q., Zhang Y., Yang C., Xiong H., Lin Y., Yao J., Li H., Xie L., Zhao W., Yao Y., Ning Z. B., Zeng R., Xiong Y., Guan K. L., Zhao S., Zhao G. P., Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327, 1004–1007 (2010).
Zhang J., Sprung R., Pei J., Tan X., Kim S., Zhu H., Liu C. F., Grishin N. V., Zhao Y., Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol. Cell. Proteomics 8, 215–225 (2009).
Zhao S., Xu W., Jiang W., Yu W., Lin Y., Zhang T., Yao J., Zhou L., Zeng Y., Li H., Li Y., Shi J., An W., Hancock S. M., He F., Qin L., Chin J., Yang P., Chen X., Lei Q., Xiong Y., Guan K. L., Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010).
Hallows W. C., Lee S., Denu J. M., Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U.S.A. 103, 10230–10235 (2006).
Schwer B., Bunkenborg J., Verdin R. O., Andersen J. S., Verdin E., Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U.S.A. 103, 10224–10229 (2006).
Shimazu T., Hirschey M. D., Hua L., Dittenhafer-Reed K. E., Schwer B., Lombard D. B., Li Y., Bunkenborg J., Alt F. W., Denu J. M., Jacobson M. P., Verdin E., SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 12, 654–661 (2010).
Jenuwein T., Allis C. D., Translating the histone code. Science 293, 1074–1080 (2001).
Lee M. S., Craigie R., A previously unidentified host protein protects retroviral DNA from autointegration. Proc. Natl. Acad. Sci. U.S.A. 95, 1528–1533 (1998).
Margalit A., Brachner A., Gotzmann J., Foisner R., Gruenbaum Y., Barrier-to-autointegration factor—A BAFfling little protein. Trends Cell Biol. 17, 202–208 (2007).
Segura-Totten M., Kowalski A. K., Craigie R., Wilson K. L., Barrier-to-autointegration factor: Major roles in chromatin decondensation and nuclear assembly. J. Cell Biol. 158, 475–485 (2002).
Montes de Oca R., Lee K. K., Wilson K. L., Binding of barrier to autointegration factor (BAF) to histone H3 and selected linker histones including H1.1. J. Biol. Chem. 280, 42252–42262 (2005).
Kovacs J. J., Murphy P. J., Gaillard S., Zhao X., Wu J. T., Nicchitta C. V., Yoshida M., Toft D. O., Pratt W. B., Yao T. P., HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18, 601–607 (2005).
Ai J., Wang Y., Dar J. A., Liu J., Liu L., Nelson J. B., Wang Z., HDAC6 regulates androgen receptor hypersensitivity and nuclear localization via modulating Hsp90 acetylation in castration-resistant prostate cancer. Mol. Endocrinol. 23, 1963–1972 (2009).
Kekatpure V. D., Dannenberg A. J., Subbaramaiah K., HDAC6 modulates Hsp90 chaperone activity and regulates activation of aryl hydrocarbon receptor signaling. J. Biol. Chem. 284, 7436–7445 (2009).
Bali P., Pranpat M., Bradner J., Balasis M., Fiskus W., Guo F., Rocha K., Kumaraswamy S., Boyapalle S., Atadja P., Seto E., Bhalla K., Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: A novel basis for antileukemia activity of histone deacetylase inhibitors. J. Biol. Chem. 280, 26729–26734 (2005).
Lee I., Schindelin H., Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134, 268–278 (2008).
van Wijk S. J., Timmers H. T., The family of ubiquitin-conjugating enzymes (E2s): Deciding between life and death of proteins. FASEB J. 24, 981–993 (2010).
Seufert W., Jentsch S., Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 9, 543–550 (1990).
Jensen J. P., Bates P. W., Yang M., Vierstra R. D., Weissman A. M., Identification of a family of closely related human ubiquitin conjugating enzymes. J. Biol. Chem. 270, 30408–30414 (1995).
Saville M. K., Sparks A., Xirodimas D. P., Wardrop J., Stevenson L. F., Bourdon J. C., Woods Y. L., Lane D. P., Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J. Biol. Chem. 279, 42169–42181 (2004).
Grou C. P., Carvalho A. F., Pinto M. P., Wiese S., Piechura H., Meyer H. E., Warscheid B., Sá-Miranda C., Azevedo J. E., Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J. Biol. Chem. 283, 14190–14197 (2008).
Neumann H., Peak-Chew S. Y., Chin J. W., Genetically encoding Nε-acetyllysine in recombinant proteins. Nat. Chem. Biol. 4, 232–234 (2008).
Huang Y., Russell W. K., Wan W., Pai P. J., Russell D. H., Liu W., A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli. Mol. Biosyst. 6, 683–686 (2010).
Chuang S. M., Madura K., Saccharomyces cerevisiae Ub-conjugating enzyme Ubc4 binds the proteasome in the presence of translationally damaged proteins. Genetics 171, 1477–1484 (2005).
Hiraishi H., Okada M., Ohtsu I., Takagi H., A functional analysis of the yeast ubiquitin ligase Rsp5: The involvement of the ubiquitin-conjugating enzyme Ubc4 and poly-ubiquitination in ethanol-induced down-regulation of targeted proteins. Biosci. Biotechnol. Biochem. 73, 2268–2273 (2009).
Pichler A., Knipscheer P., Oberhofer E., van Dijk W. J., Korner R., Olsen J. V., Jentsch S., Melchior F., Sixma T. K., SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat. Struct. Mol. Biol. 12, 264–269 (2005).
Zou W., Papov V., Malakhova O., Kim K. I., Dao C., Li J., Zhang D. E., ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin. Biochem. Biophys. Res. Commun. 336, 61–68 (2005).
Danielsen J. M., Sylvestersen K. B., Bekker-Jensen S., Szklarczyk D., Poulsen J. W., Horn H., Jensen L. J., Mailand N., Nielsen M. L., Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol. Cell. Proteomics 10, M110.003590 (2011).
Rappsilber J., Mann M., Ishihama Y., Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
Olsen J. V., Schwartz J. C., Griep-Raming J., Nielsen M. L., Damoc E., Denisov E., Lange O., Remes P., Taylor D., Splendore M., Wouters E. R., Senko M., Makarov A., Mann M., Horning S., A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol. Cell. Proteomics 8, 2759–2769 (2009).
Olsen J. V., de Godoy L. M., Li G., Macek B., Mortensen P., Pesch R., Makarov A., Lange O., Horning S., Mann M., Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021 (2005).
Cox J., Mann M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
Cox J., Matic I., Hilger M., Nagaraj N., Selbach M., Olsen J. V., Mann M., A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat. Protoc. 4, 698–705 (2009).
Elias J. E., Gygi S. P., Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).
Olsen J. V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., Mann M., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).
Colaert N., Helsens K., Martens L., Vandekerckhove J., Gevaert K., Improved visualization of protein consensus sequences by iceLogo. Nat. Methods 6, 786–787 (2009).
Dennis G., Sherman B. T., Hosack D. A., Yang J., Gao W., Lane H. C., Lempicki R. A., DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, P3 (2003).
Huang D. W., Sherman B. T., Lempicki R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
Shevchenko A., Wilm M., Vorm O., Mann M., Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).
Huh W. K., Falvo J. V., Gerke L. C., Carroll A. S., Howson R. W., Weissman J. S., O’Shea E. K., Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).
Macek B., Gnad F., Soufi B., Kumar C., Olsen J. V., Mijakovic I., Mann M., Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol. Cell. Proteomics 7, 299–307 (2008).
Macek B., Mijakovic I., Olsen J. V., Gnad F., Kumar C., Jensen P. R., Mann M., The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol. Cell. Proteomics 6, 697–707 (2007).
Soufi B., Gnad F., Jensen P. R., Petranovic D., Mann M., Mijakovic I., Macek B., The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8, 3486–3493 (2008).
Aivaliotis M., Macek B., Gnad F., Reichelt P., Mann M., Oesterhelt D., Ser/Thr/Tyr protein phosphorylation in the archaeon Halobacterium salinarum—A representative of the third domain of life. PLoS One 4, e4777 (2009).


eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors


Published In

Science Signaling
Volume 4 | Issue 183
July 2011

Submission history

Received: 9 February 2011
Accepted: 7 July 2011


Request permissions for this article.


Acknowledgments: We thank the members of the Departments of Proteomics and Disease Systems Biology at the Center for Protein Research (CPR) for their helpful discussions and the Protein Science and Technology unit at the CPR for providing recombinant RNF8. Funding: The CPR is funded by a grant from the Novo Nordisk Foundation. This work was funded by the European Commission’s 7th Framework Programme grants Proteomics Research Infrastructure Maximizing knowledge EXchange and access (XS) (INFRASTRUCTURES-F7-2010-262067/PRIME-XS) and by the Lundbeck Foundation (R48-A4649). S.A.W. is supported by a postdoctoral grant from the Danish Council for Independent Research (FSS: 10-083519). Author contributions: B.T.W. and C.C. conceived the project; B.T.W., S.A.W., and P.H. performed the experiments and analyzed the data; H.H. performed PTM conservation analysis; W.R.L. provided the plasmid vectors for expression of recombinant acetylated UBE2D3; J.V.O. provided the idea of comparing peptide length distributions; L.J.J. supervised the PTM site conservation analysis; and C.C. supervised the entire project. B.T.W. and C.C. wrote the manuscript. S.A.W., H.H., P.H., J.V.O., and L.J.J. read and commented on the manuscript. Competing interests: L.J.J. is a cofounder and scientific adviser of Intomics A/S; however, this company was not involved in this study. The other authors declare that they have no competing interests. Data availability: The data associated with this manuscript may be downloaded from (see Supplementary Materials for hashes).



Brian T. Weinert
Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
Sebastian A. Wagner
Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
Heiko Horn
Department of Disease Systems Biology, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
Peter Henriksen
Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
Wenshe R. Liu
Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
Jesper V. Olsen
Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
Lars J. Jensen
Department of Disease Systems Biology, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
Chunaram Choudhary* [email protected]
Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.


To whom correspondence should be addressed: E-mail: [email protected]

Metrics & Citations


Article Usage


Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Post-translational modifications of CDK5 and their biological roles in cancer, Molecular Biomedicine, 2, 1, (2021).
  2. Epigenetic regulation of post-embryonic development, Current Opinion in Insect Science, 43, (63-69), (2021).
  3. Proteome-Wide Analysis of Protein Lysine N -Homocysteinylation in Saccharomyces cerevisiae , Journal of Proteome Research, 20, 5, (2458-2476), (2021).
  4. Non-histone protein acetylation by the evolutionarily conserved GCN5 and PCAF acetyltransferases, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1864, 2, (194608), (2021).
  5. Proteomic analysis of ubiquitinated proteins in maize immature kernels, Journal of Proteomics, 243, (104261), (2021).
  6. Protein acetylation and deacetylation in plant‐pathogen interactions, Environmental Microbiology, 23, 9, (4841-4855), (2021).
  7. Illuminating the dark phosphoproteome, Science Signaling, 12, 565, (2021)./doi/10.1126/scisignal.aau8645
  8. Computational Approaches for Analyzing Information Flow in Biological Networks, Science Signaling, 5, 220, (re1-re1), (2021)./doi/10.1126/scisignal.2002961
  9. A comprehensive examination of the lysine acetylation targets in paper mulberry based on proteomics analyses, PLOS ONE, 16, 3, (e0240947), (2021).
  10. Proteomic response of tea plants stimulated by ammonium supply, Journal of Plant Nutrition, (1-12), (2021).
  11. See more

View Options

Check Access

Log in to view the full text


AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text








Share article link

Share on social media