Advertisement

The skinny on getting fat

When T cells take up residence in a tissue, adaption to the tissue is key for their survival. Here, Frizzell et al. have studied metabolic adaptation of tissue-resident memory T (TRM) cells at three different sites: skin, liver, and the small intestine. They report that TRM cells in each of tissues rely on distinct members of the fatty acid–binding protein (FABP) family of proteins for uptake of fatty acids. By transferring liver-resident TRM cells into naïve mice, they found that FABP expression of these TRM cells is reprogrammed by the tissue they end up seeding in the recipient mice. The studies add to the growing appreciation of immune cells as integral components of tissues they reside in.

Abstract

Tissue-resident memory T (TRM) cells exist throughout the body, where they are poised to mediate local immune responses. Although studies have defined a common mechanism of residency independent of location, there is likely to be a level of specialization that adapts TRM cells to their given tissue of lodgment. It has been shown that TRM cells in the skin rely on the uptake of exogenous fatty acids for their survival and up-regulate fatty acid–binding protein 4 (FABP4) and FABP5 as part of their transcriptional program. However, FABPs exist as a larger family of isoforms, with different members selected in a tissue-specific fashion that is optimized for local fatty acid availability. Here, we show that although TRM cells in a range of tissue widely express FABPs, they are not restricted to FABP4 and FABP5. Instead, TRM cells show varying patterns of isoform usage that are determined by tissue-derived factors. These patterns are malleable because TRM cells relocated to different organs modify their FABP expression in line with their new location. As a consequence, these results argue for tissue-specific overlays to the TRM cell residency program, including FABP expression that is tailored to the particular tissue of TRM cell lodgment.

Get full access to this article

View all available purchase options and get full access to this article.

Already a subscriber or AAAS Member? Log In

Supplementary Material

Summary

Materials and Methods
Fig. S1. Representative flow cytometric cell sorting gating strategies.
Fig. S2. Kinetics of FABP gene expression during TRM cell development.
Fig. S3. FABP gene expression in FABP1-deficient CD8+ TRM cells.
Fig. S4. FABP protein expression in endogenous populations and liver TRM cells.
Table S1. Raw data.

Resources

File (aay9283_sm.pdf)
File (aay9283_table_s1.xlsx)

REFERENCES AND NOTES

1
E. J. Wherry, V. Teichgräber, T. C. Becker, D. Masopust, S. M. Kaech, R. Antia, U. H. von Andrian, R. Ahmed, Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).
2
T. Gebhardt, L. M. Wakim, L. Eidsmo, P. C. Reading, W. R. Heath, F. R. Carbone, Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).
3
X. Jiang, R. A. Clark, L. Liu, A. J. Wagers, R. C. Fuhlbrigge, T. S. Kupper, Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature 483, 227–231 (2012).
4
D. Masopust, D. Choo, V. Vezys, E. J. Wherry, J. Duraiswamy, R. Akondy, J. Wang, K. A. Casey, D. L. Barber, K. S. Kawamura, K. A. Fraser, R. J. Webby, V. Brinkmann, E. C. Butcher, K. A. Newell, R. Ahmed, Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med. 207, 553–564 (2010).
5
H. Shin, A. Iwasaki, A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).
6
S. Ariotti, J. B. Beltman, G. Chodaczek, M. E. Hoekstra, A. E. van Beek, R. Gomez-Eerland, L. Ritsma, J. van Rheenen, A. F. M. Marée, T. Zal, R. J. de Boer, J. B. A. G. Haanen, T. N. Schumacher, Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc. Natl. Acad. Sci. U.S.A. 109, 19739–19744 (2012).
7
L. K. Mackay, M. Minnich, N. A. M. Kragten, Y. Liao, B. Nota, C. Seillet, A. Zaid, K. Man, S. Preston, D. Freestone, A. Braun, E. Wynne-Jones, F. M. Behr, R. Stark, D. G. Pellicci, D. I. Godfrey, G. T. Belz, M. Pellegrini, T. Gebhardt, M. Busslinger, W. Shi, F. R. Carbone, R. A. W. van Lier, A. Kallies, K. P. J. M. van Gisbergen, Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).
8
L. K. Mackay, A. Rahimpour, J. Z. Ma, N. Collins, A. T. Stock, M.-L. Hafon, J. Vega-Ramos, P. Lauzurica, S. N. Mueller, T. Stefanovic, D. C. Tscharke, W. R. Heath, M. Inouye, F. R. Carbone, T. Gebhardt, The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).
9
J. J. Milner, C. Toma, B. Yu, K. Zhang, K. Omilusik, A. T. Phan, D. Wang, A. J. Getzler, T. Nguyen, S. Crotty, W. Wang, M. E. Pipkin, A. W. Goldrath, Runx3 programs CD8 + T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).
10
L. M. Wakim, A. Woodward-Davis, R. Liu, Y. Hu, J. Villadangos, G. Smyth, M. J. Bevan, The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol. 189, 3462–3471 (2012).
11
J. J. Milner, A. W. Goldrath, Transcriptional programming of tissue-resident memory CD8+ T cells. Curr. Opin. Immunol. 51, 162–169 (2018).
12
P. Hombrink, C. Helbig, R. A. Backer, B. Piet, A. E. Oja, R. Stark, G. Brasser, A. Jongejan, R. E. Jonkers, B. Nota, O. Basak, H. C. Clevers, P. D. Moerland, D. Amsen, R. A. W. van Lier, Programs for the persistence, vigilance and control of human CD8 + lung-resident memory T cells. Nat. Immunol. 17, 1467–1478 (2016).
13
C. N. Skon, J.-Y. Lee, K. G. Anderson, D. Masopust, K. A. Hogquist, S. C. Jameson, Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).
14
B. S. Sheridan, Q.-M. Pham, Y.-T. Lee, L. S. Cauley, L. Puddington, L. Lefrançois, Oral infection drives a distinct population of intestinal resident memory CD8 + T cells with enhanced protective function. Immunity 40, 747–757 (2014).
15
L. K. Mackay, E. Wynne-Jones, D. Freestone, D. G. Pellicci, L. A. Mielke, D. M. Newman, A. Braun, F. Masson, A. Kallies, G. T. Belz, F. R. Carbone, T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).
16
B. J. Laidlaw, N. Zhang, H. D. Marshall, M. M. Staron, T. Guan, Y. Hu, L. S. Cauley, J. Craft, S. M. Kaech, CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41, 633–645 (2014).
17
L. K. Mackay, A. Braun, B. L. Macleod, N. Collins, C. Tebartz, S. Bedoui, F. R. Carbone, T. Gebhardt, Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol. 194, 2059–2063 (2015).
18
Y. Pan, T. Tian, C. O. Park, S. Y. Lofftus, S. Mei, X. Liu, C. Luo, J. T. O'Malley, A. Gehad, J. E. Teague, S. J. Divito, R. Fuhlbrigge, P. Puigserver, J. G. Krueger, G. S. Hotamisligil, R. A. Clark, T. S. Kupper, Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).
19
S.-J. Han, A. Glatman Zaretsky, V. Andrade-Oliveira, N. Collins, A. Dzutsev, J. Shaik, D. Morais da Fonseca, O. J. Harrison, S. Tamoutounour, A. L. Byrd, M. Smelkinson, N. Bouladoux, J. B. Bliska, J. M. Brenchley, I. E. Brodsky, Y. Belkaid, White adipose tissue is a reservoir for memory T cells and promotes protective memory responses to infection. Immunity 47, 1154–1168.e6 (2017).
20
D. O'Sullivan, G. J. W. van der Windt, S. C.-C. Huang, J. D. Curtis, C.-H. Chang, M. D. Buck, J. Qiu, A. M. Smith, W. Y. Lam, L. M. Di Plato, F.-F. Hsu, M. J. Birnbaum, E. J. Pearce, E. L. Pearce, Memory CD8 + T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).
21
A. T. Phan, A. W. Goldrath, C. K. Glass, metabolic and epigenetic coordination of T cell and macrophage immunity. Immunity 46, 714–729 (2017).
22
M. Furuhashi, G. S. Hotamisligil, Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7, 489–503 (2008).
23
A. V. Herzel, D. A. Bernlohr, The mammalian fatty acid-binding protein multigene family: Molecular and genetic insights into function. Trends Endocrinol. Metab. 11, 175–180 (2000).
24
E. M. Steinert, J. M. Schenkel, K. A. Fraser, L. K. Beura, L. S. Manlove, B. Z. Igyártó, P. J. Southern, D. Masopust, Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015).
25
L. K. Mackay, A. T. Stock, J. Z. Ma, C. M. Jones, S. J. Kent, S. N. Mueller, W. R. Heath, F. R. Carbone, T. Gebhardt, Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl. Acad. Sci. U.S.A. 109, 7037–7042 (2012).
26
D. Fernandez-Ruiz, W. Y. Ng, L. E. Holz, J. Z. Ma, A. Zaid, Y. C. Wong, L. S. Lau, V. Mollard, A. Cozijnsen, N. Collins, J. Li, G. M. Davey, Y. Kato, S. Devi, R. Skandari, M. Pauley, J. H. Manton, D. I. Godfrey, A. Braun, S. S. Tay, P. S. Tan, D. G. Bowen, F. Koch-Nolte, B. Rissiek, F. R. Carbone, B. S. Crabb, M. Lahoud, I. A. Cockburn, S. N. Mueller, P. Bertolino, G. I. McFadden, I. Caminschi, W. R. Heath, Liver-resident memory CD8 + T cells form a front-line defense against malaria liver-stage infection. Immunity 45, 889–902 (2016).
27
J. M. Schenkel, K. A. Fraser, D. Masopust, Cutting edge: Resident memory CD8 T cells occupy frontline niches in secondary lymphoid organs. J. Immunol. 192, 2961–2964 (2014).
28
L. E. Holz, J. E. Prier, D. Freestone, T. M. Steiner, K. English, D. N. Johnson, V. Mollard, A. Cozijnsen, G. M. Davey, D. I. Godfrey, K. Yui, L. K. Mackay, M. H. Lahoud, I. Caminschi, G. I. McFadden, P. Bertolino, D. Fernandez-Ruiz, W. R. Heath, CD8 + T cell activation leads to constitutive formation of liver tissue-resident memory T cells that seed a large and flexible niche in the liver. Cell Rep. 25, 68–79.e4 (2018).
29
L. K. Mackay, A. Kallies, Transcriptional regulation of tissue-resident lymphocytes. Trends Immunol. 38, 94–103 (2017).
30
X. Fan, A. Y. Rudensky, Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).
31
B. V. Kumar, R. Kratchmarov, M. Miron, D. J. Carpenter, T. Senda, H. Lerner, A. Friedman, S. L. Reiner, D. L. Farber, Functional heterogeneity of human tissue-resident memory T cells based on dye efflux capacities. JCI Insight 3, e123568 (2018).
32
L. K. Beura, J. S. Mitchell, E. A. Thompson, J. M. Schenkel, J. Mohammed, S. Wijeyesinghe, R. Fonseca, B. J. Burbach, H. D. Hickman, V. Vezys, B. T. Fife, D. Masopust, Intravital mucosal imaging of CD8 + resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat. Immunol. 19, 173–182 (2018).
33
S. L. Park, A. Zaid, J. L. Hor, S. N. Christo, J. E. Prier, B. Davies, Y. O. Alexandre, J. L. Gregory, T. A. Russell, T. Gebhardt, F. R. Carbone, D. C. Tscharke, W. R. Heath, S. N. Mueller, L. K. Mackay, Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 19, 183–191 (2018).
34
O. J. Harrison, J. L. Linehan, H.-Y. Shih, N. Bouladoux, S.-J. Han, M. Smelkinson, S. K. Sen, A. L. Byrd, M. Enamorado, C. Yao, S. Tamoutounour, F. Van Laethem, C. Hurabielle, N. Collins, A. Paun, R. Salcedo, J. J. O’Shea, Y. Belkaid, Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 363, eaat6280 (2019).
35
L. K. Beura, S. Wijeyesinghe, E. A. Thompson, M. G. Macchietto, P. C. Rosato, M. J. Pierson, J. M. Schenkel, J. S. Mitchell, V. Vezys, B. T. Fife, S. Shen, D. Masopust, T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity 48, 327–338.e5 (2018).
36
S. L. Park, A. Buzzai, J. Rautela, J. L. Hor, K. Hochheiser, M. Effern, N. McBain, T. Wagner, J. Edwards, R. McConville, J. S. Wilmott, R. A. Scolyer, T. Tüting, U. Palendira, D. Gyorki, S. N. Mueller, N. D. Huntington, S. Bedoui, M. Hölzel, L. K. Mackay, J. Waithman, T. Gebhardt, Tissue-resident memory CD8 + T cells promote melanoma-immune equilibrium in skin. Nature 565, 366–371 (2019).
37
D. Masopust, A. G. Soerens, Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 37, 521–546 (2019).
38
T. Hanhoff, C. Lücke, F. Spener, Insights into binding of fatty acids by fatty acid binding proteins. Mol. Cell. Biochem. 239, 45–54 (2002).

Information & Authors

Information

Published In

View large Science Immunology cover image
Science Immunology
Volume 5 | Issue 46
April 2020

Submission history

Received: 4 August 2019
Accepted: 6 February 2020

Permissions

Request permissions for this article.

Acknowledgments

This work was supported by a Howard Hughes Medical Institute and Bill & Melinda Gates International Research Scholarship (OPP1175796) to L.K.M. and National Health and Medical Research Council (NHMRC; APP1129711) to L.K.M. H.F. is supported by an NSF Graduate Research Fellowship and was supported by an NSF Graduate Research Opportunities Worldwide Fellowship. N.G.Z. is supported by FAPESP BEPE Scholarship (2019/12431-2). S.L.P. is supported by a Cancer Council Victoria Postdoctoral Fellowship. H.M. is supported by an Australian Research Council (ARC) Discovery Early Career Researcher Award (DE170100575). J.A.V. is supported by an NHMRC Principal Research Fellowship (1154502) and Program Grant (1113293). L.K.M. is a Senior Medical Research Fellow supported by the Sylvia and Charles Viertel Charitable Foundation. Author contributions: H.F., R.F., D.F., S.N.C., M.E., N.G.Z., B.v.S., S.C.-G., and S.L.P. performed experiments. H.F., R.F., F.R.C., and L.K.M. designed experiments. H.F. and R.F. analyzed data. J.A.V. and H.E.G.M. provided supervision. H.F., R.F., F.R.C., and L.K.M. prepared the manuscript. L.K.M. provided funding and led the research program. Competing interests: The authors declare that they have no competing financial interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper or the Supplementary Materials.

Authors

Affiliations

Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Present address: Department of Bioengineering, University of Washington, Seattle, WA, USA.
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
B. von Scheidt
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
D. Freestone
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Department of Biochemistry and Molecular Biology, University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia.
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Department of Biochemistry and Molecular Biology, University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia.
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.

Funding Information

Notes

These authors contributed equally to this work.
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes, Journal of Experimental Medicine, 219, 1, (2021).https://doi.org/10.1084/jem.20210116
    Crossref
  2. Harnessing liver-resident memory T cells for protection against malaria, Expert Review of Vaccines, 20, 2, (127-141), (2021).https://doi.org/10.1080/14760584.2021.1881485
    Crossref
  3. Hypoxia acts as an environmental cue for the human tissue-resident memory T cell differentiation program, JCI Insight, 6, 10, (2021).https://doi.org/10.1172/jci.insight.138970
    Crossref
  4. Metabolic regulation of tissue-resident memory CD8+ T cells, Current Opinion in Pharmacology, 57, (117-124), (2021).https://doi.org/10.1016/j.coph.2021.02.004
    Crossref
  5. T‐cell memory in tissues, European Journal of Immunology, 51, 6, (1310-1324), (2021).https://doi.org/10.1002/eji.202049062
    Crossref
  6. Francisella tularensis induces Th1 like MAIT cells conferring protection against systemic and local infection, Nature Communications, 12, 1, (2021).https://doi.org/10.1038/s41467-021-24570-2
    Crossref
  7. The architectural design of CD8+ T cell responses in acute and chronic infection: Parallel structures with divergent fates, Journal of Experimental Medicine, 218, 4, (2021).https://doi.org/10.1084/jem.20201730
    Crossref
  8. Tissue-resident memory T cells in tumor immunity and immunotherapy, Journal of Experimental Medicine, 218, 4, (2021).https://doi.org/10.1084/jem.20201605
    Crossref
  9. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity, Nature Immunology, 22, 9, (1140-1151), (2021).https://doi.org/10.1038/s41590-021-01004-1
    Crossref
  10. Dendritic cells maintain anti-tumor immunity by positioning CD8 skin-resident memory T cells, Life Science Alliance, 4, 10, (e202101056), (2021).https://doi.org/10.26508/lsa.202101056
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media