Advertisement

Making surface chemistry more exact

Accurate description of elementary steps of chemical reactions at surfaces is a long-standing challenge because of the lack of reliable experimental measurements of the corresponding rate constants, which also makes it impossible to rigorously validate theoretical estimates. Even for reactions as simple as thermal recombination of hydrogen atoms on platinum surfaces, previous experimental rate constants have only been obtained with large uncertainties. Using velocity-resolved kinetics and ion imaging–based calibration of absolute molecular beam fluxes, Borodin et al. managed to overcome established experimental difficulties and report unprecedentedly accurate rate constants for this reaction over a wide temperature range. They also demonstrate a parameter-free model that quantitatively reproduces the experiment, opening up new vistas for the growing field of computational heterogeneous catalysis. —YS

Abstract

There is wide interest in developing accurate theories for predicting rates of chemical reactions that occur at metal surfaces, especially for applications in industrial catalysis. Conventional methods contain many approximations that lack experimental validation. In practice, there are few reactions where sufficiently accurate experimental data exist to even allow meaningful comparisons to theory. Here, we present experimentally derived thermal rate constants for hydrogen atom recombination on platinum single-crystal surfaces, which are accurate enough to test established theoretical approximations. A quantum rate model is also presented, making possible a direct evaluation of the accuracy of commonly used approximations to adsorbate entropy. We find that neglecting the wave nature of adsorbed hydrogen atoms and their electronic spin degeneracy leads to a 10× to 1000× overestimation of the rate constant for temperatures relevant to heterogeneous catalysis. These quantum effects are also found to be important for nanoparticle catalysts.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Materials

This PDF file includes:

Materials and Methods
Supplementary Text
Figs. S1 to S15
References (3471)

References and Notes

1
J. L. Bao, D. G. Truhlar, Variational transition state theory: Theoretical framework and recent developments. Chem. Soc. Rev.46, 7548–7596 (2017).
2
F. Studt, Grand challenges in computational catalysis. Front. Catal.1, 658965 (2021).
3
A. H. Motagamwala, J. A. Dumesic, Microkinetic modeling: A tool for rational catalyst design. Chem. Rev.121, 1049–1076 (2021).
4
J. E. Sutton, W. Guo, M. A. Katsoulakis, D. G. Vlachos, Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. Nat. Chem.8, 331–337 (2016).
5
G. B. Park, T. N. Kitsopoulos, D. Borodin, K. Golibrzuch, J. Neugebohren, D. J. Auerbach, C. T. Campbell, A. M. Wodtke, The kinetics of elementary thermal reactions in heterogeneous catalysis. Nat. Rev. Chem.3, 723–732 (2019).
6
P. Sabatier, Catalysis in Organic Chemistry (D. Van Nostrand Company, 1922).
7
G. Ertl, Reactions at surfaces: From atoms to complexity (Nobel Lecture). Angew. Chem. Int. Ed.47, 3524–3535 (2008).
8
A. Godula-Jopek, Hydrogen Production by Electrolysis (Wiley-VCH, 2015).
9
M. P. D’Evelyn, R. J. Madix, Reactive scattering from solid surfaces. Surf. Sci. Rep.3, 413–495 (1983).
10
Y. V. Suleimanov, F. J. Aoiz, H. Guo, Chemical reaction rate coefficients from ring polymer molecular dynamics: Theory and practical applications. J. Phys. Chem. A120, 8488–8502 (2016).
11
M. García-Diéguez, D. D. Hibbitts, E. Iglesia, Hydrogen chemisorption isotherms on platinum particles at catalytic temperatures: Langmuir and two-dimensional gas models revisited. J. Phys. Chem. C123, 8447–8462 (2019).
12
S. Bhandari, S. Rangarajan, C. T. Maravelias, J. A. Dumesic, M. Mavrikakis, Reaction mechanism of vapor-phase formic acid decomposition over platinum catalysts: DFT, reaction kinetics experiments, and microkinetic modeling. ACS Catal.10, 4112–4126 (2020).
13
M. Jørgensen, H. Grönbeck, First-principles microkinetic modeling of methane oxidation over Pd(100) and Pd(111). ACS Catal.6, 6730–6738 (2016).
14
A. Bajpai, P. Mehta, K. Frey, A. M. Lehmer, W. F. Schneider, Benchmark first-principles calculations of adsorbate free energies. ACS Catal.8, 1945–1954 (2018).
15
D. Borodin, I. Rahinov, O. Galparsoro, J. Fingerhut, M. Schwarzer, K. Golibrzuch, G. Skoulatakis, D. J. Auerbach, A. Kandratsenka, D. Schwarzer, T. N. Kitsopoulos, A. M. Wodtke, Kinetics of NH3 desorption and diffusion on Pt: Implications for the Ostwald process. J. Am. Chem. Soc.143, 18305–18316 (2021).
16
J. Neugebohren, D. Borodin, H. W. Hahn, J. Altschäffel, A. Kandratsenka, D. J. Auerbach, C. T. Campbell, D. Schwarzer, D. J. Harding, A. M. Wodtke, T. N. Kitsopoulos, Velocity-resolved kinetics of site-specific carbon monoxide oxidation on platinum surfaces. Nature558, 280–283 (2018).
17
R. van Lent, S. V. Auras, K. Cao, A. J. Walsh, M. A. Gleeson, L. B. F. Juurlink, Site-specific reactivity of molecules with surface defects-the case of H2 dissociation on Pt. Science363, 155–157 (2019).
18
A. C. Luntz, J. K. Brown, M. D. Williams, Molecular beam studies of H2 and D2 dissociative chemisorption on Pt(111). J. Chem. Phys.93, 5240–5246 (1990).
19
K. Tonokura, T. Suzuki, Slicing photofragment spatial-distribution by laser sheet ionization. Chem. Phys. Lett.224, 1–6 (1994).
20
C. R. Gebhardt, T. P. Rakitzis, P. C. Samartzis, V. Ladopoulos, T. N. Kitsopoulos, Slice imaging: A new approach to ion imaging and velocity mapping. Rev. Sci. Instrum.72, 3848–3853 (2001).
21
G. J. Kroes, Computational approaches to dissociative chemisorption on metals: Towards chemical accuracy. Phys. Chem. Chem. Phys.23, 8962–9048 (2021).
22
D. R. Olander, Heterogeneous chemical kinetics by modulated molecular beam mass spectrometry. J. Colloid Interface Sci.58, 169–183 (1977).
23
K. Christmann, G. Ertl, T. Pignet, Adsorption of hydrogen on a Pt(111) surface. Surf. Sci.54, 365–392 (1976).
24
B. Poelsema, K. Lenz, G. Comsa, The dissociative adsorption of hydrogen on defect-‘free’ Pt(111). J. Phys. Condens. Matter22, 304006 (2010).
25
P. Samson, A. Nesbitt, B. E. Koel, A. Hodgson, Deuterium dissociation on ordered Sn/Pt(111) surface alloys. J. Chem. Phys.109, 3255–3264 (1998).
26
M. J. van der Niet, A. den Dunnen, L. B. Juurlink, M. T. Koper, The influence of step geometry on the desorption characteristics of O2, D2, and H2O from stepped Pt surfaces. J. Chem. Phys.132, 174705 (2010).
27
G. E. Gdowski, J. A. Fair, R. J. Madix, Reactive scattering of small molecules from platinum crystal surfaces: D2CO, CH3OH, HCOOH, and the nonanomalous kinetics of hydrogen atom recombination. Surf. Sci.127, 541–554 (1983).
28
M. Salmerón, R. J. Gale, G. A. Somorjai, A modulated molecular beam study of the mechanism of the H2–D2 exchange reaction on Pt(111) and Pt(332) crystal surfaces. J. Chem. Phys.70, 2807–2818 (1979).
29
S. K. Jo, Weakly-bound hydrogen on defected Pt(111). Surf. Sci.635, 99–107 (2015).
30
B. J. J. Koeleman, S. T. de Zwart, A. L. Boers, B. Poelsema, L. K. Verhey, Adsorption study of hydrogen on a stepped Pt(997) surface using low energy recoil scattering. Nucl. Instrum. Methods Phys. Res.218, 225–229 (1983).
31
M. Jørgensen, H. Grönbeck, Adsorbate entropies with complete potential energy sampling in microkinetic modeling. J. Phys. Chem. C121, 7199–7207 (2017).
32
B. Poelsema, G. Mechtersheimer, G. Comsa, The interaction of hydrogen with platinum(s) −9(111)×(111) studied with helium beam diffraction. Surf. Sci.111, 519–544 (1981).
33
D. Borodin, Hydrogen atom recombination on Pt(111) and Pt(332). Zenodo (2022); 10.5281/zenodo.6565004.
34
D. J. Harding, J. Neugebohren, D. J. Auerbach, T. N. Kitsopoulos, A. M. Wodtke, Using ion imaging to measure velocity distributions in surface scattering experiments. J. Phys. Chem. A119, 12255–12262 (2015).
35
D. J. Harding, J. Neugebohren, H. Hahn, D. J. Auerbach, T. N. Kitsopoulos, A. M. Wodtke, Ion and velocity map imaging for surface dynamics and kinetics. J. Chem. Phys.147, 013939 (2017).
36
J. Fingerhut, D. Borodin, M. Schwarzer, G. Skoulatakis, D. J. Auerbach, A. M. Wodtke, T. N. Kitsopoulos, The barrier for CO2 functionalization to formate on hydrogenated Pt. J. Phys. Chem. A125, 7396–7405 (2021).
37
K. D. Rinnen, M. A. Buntine, D. A. V. Kliner, R. N. Zare, W. M. Huo, Quantitative determination of H2, HD, and D2 internal-state distributions by (2+1) resonance-enhanced multiphoton ionization. J. Chem. Phys.95, 214–225 (1991).
38
D. Borodin, K. Golibrzuch, M. Schwarzer, J. Fingerhut, G. Skoulatakis, D. Schwarzer, T. Seelemann, T. Kitsopoulos, A. M. Wodtke, Measuring transient reaction rates from nonstationary catalysts. ACS Catal.10, 14056–14066 (2020).
39
G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.6, 15–50 (1996).
40
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B54, 11169–11186 (1996).
41
G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B49, 14251–14269 (1994).
42
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B47, 558–561 (1993).
43
B. Hammer, L. B. Hansen, J. K. Norskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B59, 7413–7421 (1999).
44
P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B50, 17953–17979 (1994).
45
M. Methfessel, A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B40, 3616–3621 (1989).
46
H. J. Monkhorst, J. D. Pack, Special points for brillouin-zone integrations. Phys. Rev. B13, 5188–5192 (1976).
47
M. N. Srnec, S. Upadhyay, J. D. Madura, A Python program for solving Schrödinger’s equation in undergraduate physical chemistry. J. Chem. Educ.94, 813–815 (2017).
48
P. J. Cooney, E. P. Kanter, Z. Vager, Convenient numerical technique for solving the one-dimensional Schrödinger-equation for bound-states. Am. J. Phys.49, 76–77 (1981).
49
Ş. C. Bǎdescu, K. Jacobi, Y. Wang, K. Bedürftig, G. Ertl, P. Salo, T. Ala-Nissila, S. C. Ying, Vibrational states of a H monolayer on the Pt(111) surface. Phys. Rev. 68, 205401 (2003).
50
G. Källén, G. Wahnström, Quantum treatment of H adsorbed on a Pt(111) surface. Phys. Rev. B65, 0334061–0334064 (2002).
51
Ş. C. Bădescu, P. Salo, T. Ala-Nissila, S. C. Ying, K. Jacobi, Y. Wang, K. Bedürftig, G. Ertl, Energetics and vibrational states for hydrogen on Pt(111). Phys. Rev. Lett.88, 136101 (2002).
52
M. Kammler, S. M. Janke, A. Kandratsenka, A. M. Wodtke, Genetic algorithm approach to global optimization of the full-dimensional potential energy surface for hydrogen atom at fcc-metal surfaces. Chem. Phys. Lett.683, 286–290 (2017).
53
D. Borodin, M. Schwarzer, H. W. Hahn, J. Fingerhut, Y. Wang, D. J. Auerbach, H. Guo, J. Schroeder, T. N. Kitsopoulos, A. M. Wodtke, The puzzle of rapid hydrogen oxidation on Pt(111). Mol. Phys.119, e1966533 (2021).
54
K. Cao, R. van Lent, A. W. Kleyn, L. B. F. Juurlink, A molecular beam study of D2 dissociation on Pt(111): Testing SRP-DFT calculations. Chem. Phys. Lett.706, 680–683 (2018).
55
I. M. N. Groot, A. W. Kleyn, L. B. F. Juurlink, Separating catalytic activity at edges and terraces on platinum: Hydrogen dissociation. J. Phys. Chem. C117, 9266–9274 (2013).
56
C. Meng, M. H. M. Janssen, Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging. Rev. Sci. Instrum.86, 023110 (2015).
57
K. Jousten, Handbook of Vacuum Technology (Wiley-VCH, 2016).
58
M. J. Murphy, A. Hodgson, Adsorption and desorption dynamics of H2 and D2 on Cu(111): The role of surface temperature and evidence for corrugation of the dissociation barrier. J. Chem. Phys.108, 4199–4211 (1998).
59
R. A. Olsen, D. A. McCormack, M. Luppi, E. J. Baerends, Six-dimensional quantum dynamics of H2 dissociative adsorption on the Pt(211) stepped surface. J. Chem. Phys.128, 194715 (2008).
60
D. A. McCormack, R. A. Olsen, E. J. Baerends, Mechanisms of H2 dissociative adsorption on the Pt(211) stepped surface. J. Chem. Phys.122, 194708 (2005).
61
C. Jansen, L. Juurlink, Absolute dissociation cross sections for D2 dissociation on Pt steps. Chem. Phys. Lett.776, 138679–138683 (2021).
62
G. Anger, H. F. Berger, M. Luger, S. Feistritzer, A. Winkler, K. D. Rendulic, Microfacets of the (1 × 2) reconstructed Pt(110) surface seen in the adsorption dynamics of H2. Surf. Sci.219, L583–L589 (1989).
63
G. N. Lewis, A new principle of equilibrium. Proc. Natl. Acad. Sci. U.S.A.11, 179–183 (1925).
64
J. I. Steinfeld, J. S. Francisco, W. L. Hase, Chemical Kinetics and Dynamics (Prentice Hall, 1989).
65
M. Kratzer, J. Stettner, A. Winkler, Angular distribution of desorbing/permeating deuterium from modified Pd(111) surfaces. Surf. Sci.601, 3456–3463 (2007).
66
R. J. Gale, M. Salmeron, G. A. Somorjai, Variation of surface reaction probability with reactant angle of incidence: A molecular beam study of asymmetry of stepped platinum crystal surfaces for H-H bond breaking. Phys. Rev. Lett.38, 1027–1029 (1977).
67
J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Nørskov, J. P. Sethna, K. W. Jacobsen, Bayesian error estimation in density-functional theory. Phys. Rev. Lett.95, 216401 (2005).
68
J. Wellendorff, T. L. Silbaugh, D. Garcia-Pintos, J. K. Nørskov, T. Bligaard, F. Studt, C. T. Campbell, A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf. Sci.640, 36–44 (2015).
69
A. P. Graham, A. Menzel, J. P. Toennies, Quasielastic helium atom scattering measurements of microscopic diffusional dynamics of H and D on the Pt(111) surface. J. Chem. Phys.111, 1676–1685 (1999).
70
L. Petzold, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. Statist. Comput.4, 136–148 (1983).
71
M. V. Arena, E. D. Westre, D. E. Brown, J. Kutzner, S. M. George, Surface-diffusion of hydrogen on a stepped Ru(001) surface. Surf. Sci.325, 151–162 (1995).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 377 | Issue 6604
22 July 2022

Submission history

Received: 21 March 2022
Accepted: 16 June 2022
Published in print: 22 July 2022

Permissions

Request permissions for this article.

Acknowledgments

We thank J. C. Tully for helpful discussions.
Funding: D.B. and M.S. thank the BENCh graduate school, funded by the DFG (389479699/GRK2455). T.N.K., G.S., A.K., M.S., and J.F. acknowledge support from the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 833404). Y.W., J.Z., and H.G. acknowledge the US National Science Foundation (grant. no. CHE-1951328), and H.G. thanks the Alexander von Humboldt Foundation for a Humboldt Research Award. The calculations were partially performed at the Center for Advanced Research Computing (CARC) at the University of New Mexico and at the National Energy Research Scientific Computing (NERSC) Center.
Author contributions: D.B., M.S., and J.F. conducted the transient kinetics experiments. Flux calibration procedures were developed by D.B., G.B.P., M.S., F.N., D.J.A., and T.N.K. D.B. and D.S. developed the reaction-diffusion analysis. D.B. and A.M.W. developed the quantum rate model. N.H., Y.W., J.Z., and H.G. conducted DFT calculations. D.B., N.H., A.K., and H.G. analyzed DFT calculations and developed methods for description of nuclear partition functions. M.S., J.F., G.S., T.N.K., D.J.A., D.S., and A.K. participated in discussion of the results. D.B., D.J.A., H.G., and A.M.W. wrote the manuscript and the supporting material. All authors contributed to the reviews of the manuscript and the supporting material.
Competing interests: None declared.
Data and material availability: All data needed to evaluate the conclusions in the paper are present in the paper or the supplementary materials and are publicly available in the Zenodo repository (33).
License information: Copyright © 2022 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse

Authors

Affiliations

Institute for Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, am Faßberg 11, 37077 Göttingen, Germany.
Roles: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.
Nils Hertl
Institute for Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, am Faßberg 11, 37077 Göttingen, Germany.
Roles: Formal analysis, Investigation, Methodology, Resources, Validation, and Writing - review & editing.
Institute for Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, am Faßberg 11, 37077 Göttingen, Germany.
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
Roles: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Software, Validation, and Writing - review & editing.
Michael Schwarzer
Institute for Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
Roles: Conceptualization, Methodology, and Software.
Jan Fingerhut
Institute for Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
Roles: Data curation, Investigation, and Validation.
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
Roles: Data curation, Formal analysis, Investigation, Resources, and Validation.
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
Roles: Formal analysis, Methodology, Resources, Software, Validation, Writing - original draft, and Writing - review & editing.
Florian Nitz
Institute for Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
Roles: Conceptualization, Formal analysis, Methodology, and Software.
Georgios Skoulatakis
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, am Faßberg 11, 37077 Göttingen, Germany.
Role: Investigation.
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, am Faßberg 11, 37077 Göttingen, Germany.
Roles: Formal analysis, Investigation, Methodology, and Resources.
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, am Faßberg 11, 37077 Göttingen, Germany.
Roles: Conceptualization, Investigation, Methodology, and Writing - review & editing.
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, am Faßberg 11, 37077 Göttingen, Germany.
Role: Writing - review & editing.
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
Roles: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Visualization, Writing - original draft, and Writing - review & editing.
Theofanis N. Kitsopoulos https://orcid.org/0000-0001-6228-1002
Institute for Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, am Faßberg 11, 37077 Göttingen, Germany.
Department of Chemistry, University of Crete, 71003 Heraklion, Greece.
Institute of Electronic Structure and Laser, FORTH, 71110 Heraklion, Greece.
Roles: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, and Writing - review & editing.
Institute for Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany.
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, am Faßberg 11, 37077 Göttingen, Germany.
Roles: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, Validation, Writing - original draft, and Writing - review & editing.

Funding Information

Notes

*
Corresponding author. Email: [email protected] (D.B.); [email protected] (A.M.W.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Adsorption and Absorption Energies of Hydrogen with Palladium, The Journal of Physical Chemistry C, 126, 34, (14500-14508), (2022).https://doi.org/10.1021/acs.jpcc.2c04567
    Crossref
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media