Advertisement
No access
Special Issue Review

Grassland soil carbon sequestration: Current understanding, challenges, and solutions

Science
4 Aug 2022
Vol 377, Issue 6606
pp. 603-608

Abstract

Grasslands store approximately one third of the global terrestrial carbon stocks and can act as an important soil carbon sink. Recent studies show that plant diversity increases soil organic carbon (SOC) storage by elevating carbon inputs to belowground biomass and promoting microbial necromass contribution to SOC storage. Climate change affects grassland SOC storage by modifying the processes of plant carbon inputs and microbial catabolism and anabolism. Improved grazing management and biodiversity restoration can provide low-cost and/or high-carbon-gain options for natural climate solutions in global grasslands. The achievable SOC sequestration potential in global grasslands is 2.3 to 7.3 billion tons of carbon dioxide equivalents per year (CO2e year−1) for biodiversity restoration, 148 to 699 megatons of CO2e year−1 for improved grazing management, and 147 megatons of CO2e year−1 for sown legumes in pasturelands.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
R. P. White, S. Murray, M. Rohweder, Pilot Analysis of Global Ecosystems: Grassland Ecosystems (World Resources Institute, 2000).
2
R. D. Bardgett, J. M. Bullock, S. Lavorel, P. Manning, U. Schaffner, N. Ostle, M. Chomel, G. Durigan, E. L. Fry, D. Johnson, J. M. Lavallee, G. Le Provost, S. Luo, K. Png, M. Sankaran, X. Hou, H. Zhou, L. Ma, W. Ren, X. Li, Y. Ding, Y. Li, H. Shi, Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).
3
E. Lugato, J. M. Lavallee, M. L. Haddix, P. Panagos, M. F. Cotrufo, Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 295–300 (2021).
4
Y. Yang, D. Tilman, G. Furey, C. Lehman, Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2019).
5
S. Eze, S. M. Palmer, P. J. Chapman, Soil organic carbon stock in grasslands: Effects of inorganic fertilizers, liming and grazing in different climate settings. J. Environ. Manage. 223, 74–84 (2018).
6
R. B. Jackson, K. Lajtha, S. E. Crow, G. Hugelius, M. G. Kramer, G. Piñeiro, The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).
7
J. M. Lavallee, J. L. Soong, M. F. Cotrufo, Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 26, 261–273 (2020).
8
M. F. Cotrufo, J. M. Lavallee, Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Adv. Agron. 172, 1–66 (2022).
9
C. Liang, J. P. Schimel, J. D. Jastrow, The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).
10
S. H. Villarino, P. Pinto, R. B. Jackson, G. Piñeiro, Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions. Sci. Adv. 7, eabd3176 (2021).
11
M. F. Cotrufo, M. G. Ranalli, M. L. Haddix, J. Six, E. Lugato, Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).
12
E. Mitchell, C. Scheer, D. Rowlings, F. Cotrufo, R. T. Conant, P. Grace, Important constraints on soil organic carbon formation efficiency in subtropical and tropical grasslands. Glob. Chang. Biol. 27, 5383–5391 (2021).
13
S. Chen, W. Wang, W. Xu, Y. Wang, H. Wan, D. Chen, Z. Tang, X. Tang, G. Zhou, Z. Xie, D. Zhou, Z. Shangguan, J. Huang, J.-S. He, Y. Wang, J. Sheng, L. Tang, X. Li, M. Dong, Y. Wu, Q. Wang, Z. Wang, J. Wu, F. S. Chapin 3rd, Y. Bai, Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. U.S.A. 115, 4027–4032 (2018).
14
M. Lange, N. Eisenhauer, C. A. Sierra, H. Bessler, C. Engels, R. I. Griffiths, P. G. Mellado-Vázquez, A. A. Malik, J. Roy, S. Scheu, S. Steinbeiss, B. C. Thomson, S. E. Trumbore, G. Gleixner, Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).
15
J. Prommer, T. W. N. Walker, W. Wanek, J. Braun, D. Zezula, Y. Hu, F. Hofhansl, A. Richter, Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Chang. Biol. 26, 669–681 (2020).
16
S. D. Frey, Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).
17
C. Liang, W. Amelung, J. Lehmann, M. Kästner, Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Chang. Biol. 25, 3578–3590 (2019).
18
B. Wang, S. An, C. Liang, Y. Liu, Y. Kuzyakov, Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol. Biochem. 162, 108422 (2021).
19
C. Averill, B. L. Turner, A. C. Finzi, Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).
20
T. Ma, S. Zhu, Z. Wang, D. Chen, G. Dai, B. Feng, X. Su, H. Hu, K. Li, W. Han, C. Liang, Y. Bai, X. Feng, Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat. Commun. 9, 3480 (2018).
21
J. G. Ernakovich, J. Baldock, C. Creamer, J. Sanderman, K. Kalbitz, M. Farrell, A combined microbial and ecosystem metric of carbon retention efficiency explains land cover-dependent soil microbial biodiversity–ecosystem function relationships. Biogeochemistry 153, 1–15 (2021).
22
M. F. Cotrufo, M. L. Haddix, M. E. Kroeger, C. E. Stewart, The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biol. Biochem. 168, 108648 (2022).
23
T. Bai, P. Wang, S. J. Hall, F. Wang, C. Ye, Z. Li, S. Li, L. Zhou, Y. Qiu, J. Guo, H. Guo, Y. Wang, S. Hu, Interactive global change factors mitigate soil aggregation and carbon change in a semi-arid grassland. Glob. Chang. Biol. 26, 5320–5332 (2020).
24
X. Cheng, Y. Luo, X. Xu, R. Sherry, Q. Zhang, Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming. Biogeosciences 8, 1487–1498 (2011).
25
M.-H. Wu, S.-Y. Chen, J.-W. Chen, K. Xue, S.-L. Chen, X.-M. Wang, T. Chen, S.-C. Kang, J.-P. Rui, J. E. Thies, R. D. Bardgett, Y.-F. Wang, Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proc. Natl. Acad. Sci. U.S.A. 118, e2025321118 (2021).
26
J. Chen, L. Elsgaard, K. J. van Groenigen, J. E. Olesen, Z. Liang, Y. Jiang, P. E. Laerke, Y. Zhang, Y. Luo, B. A. Hungate, R. L. Sinsabaugh, U. Jørgensen, Soil carbon loss with warming: New evidence from carbon-degrading enzymes. Glob. Chang. Biol. 26, 1944–1952 (2020).
27
J. Jia, Z. Cao, C. Liu, Z. Zhang, L. Lin, Y. Wang, N. Haghipour, L. Wacker, H. Bao, T. Dittmar, M. J. Simpson, H. Yang, T. W. Crowther, T. I. Eglinton, J.-S. He, X. Feng, Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. Glob. Chang. Biol. 25, 4383–4393 (2019).
28
K. S. Rocci, J. M. Lavallee, C. E. Stewart, M. F. Cotrufo, Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Sci. Total Environ. 793, 148569 (2021).
29
A. J. Felton, A. K. Knapp, M. D. Smith, Precipitation-productivity relationships and the duration of precipitation anomalies: An underappreciated dimension of climate change. Glob. Chang. Biol. 27, 1127–1140 (2021).
30
V. Humphrey, A. Berg, P. Ciais, P. Gentine, M. Jung, M. Reichstein, S. I. Seneviratne, C. Frankenberg, Soil moisture-atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).
31
B. Zhang, M. W. Cadotte, S. Chen, X. Tan, C. You, T. Ren, M. Chen, S. Wang, W. Li, C. Chu, L. Jiang, Y. Bai, J. Huang, X. Han, Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology 100, e02828 (2019).
32
W. Xiao, X. Chen, X. Jing, B. Zhu, A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biol. Biochem. 123, 21–32 (2018).
33
A. F. A. Pellegrini, A. Ahlström, S. E. Hobbie, P. B. Reich, L. P. Nieradzik, A. C. Staver, B. C. Scharenbroch, A. Jumpponen, W. R. L. Anderegg, J. T. Randerson, R. B. Jackson, Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
34
Y. Zhou, J. Singh, J. R. Butnor, C. Coetsee, P. B. Boucher, M. F. Case, E. G. Hockridge, A. B. Davies, A. C. Staver, Limited increases in savanna carbon stocks over decades of fire suppression. Nature 603, 445–449 (2022).
35
O. J. Schmitz, C. C. Wilmers, S. J. Leroux, C. E. Doughty, T. B. Atwood, M. Galetti, A. B. Davies, S. J. Goetz, Animals and the zoogeochemistry of the carbon cycle. Science 362, eaar3213 (2018).
36
J. A. Kristensen, J.-C. Svenning, K. Georgiou, Y. Malhi, Can large herbivores enhance ecosystem carbon persistence?Trends Ecol. Evol. 37, 117–128 (2022).
37
N. W. Sokol, M. A. Bradford, Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12, 46–53 (2019).
38
C. H. Wilson, M. S. Strickland, J. A. Hutchings, T. S. Bianchi, S. L. Flory, Grazing enhances belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland. Glob. Chang. Biol. 24, 2997–3009 (2018).
39
J. Sitters, E. R. J. Wubs, E. S. Bakker, T. W. Crowther, P. B. Adler, S. Bagchi, J. D. Bakker, L. Biederman, E. T. Borer, E. E. Cleland, N. Eisenhauer, J. Firn, L. Gherardi, N. Hagenah, Y. Hautier, S. E. Hobbie, J. M. H. Knops, A. S. MacDougall, R. L. McCulley, J. L. Moore, B. Mortensen, P. L. Peri, S. M. Prober, C. Riggs, A. C. Risch, M. Schütz, E. W. Seabloom, J. Siebert, C. J. Stevens, G. F. C. Veen, Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Glob. Chang. Biol. 26, 2060–2071 (2020).
40
A. Sandhage-Hofmann, A. Linstädter, L. Kindermann, S. Angombe, W. Amelung, Conservation with elevated elephant densities sequesters carbon in soils despite losses of woody biomass. Glob. Chang. Biol. 27, 4601–4614 (2021).
41
E. S. Forbes, J. H. Cushman, D. E. Burkepile, T. P. Young, M. Klope, H. S. Young, Synthesizing the effects of large, wild herbivore exclusion on ecosystem function. Funct. Ecol. 33, 1597–1610 (2019).
42
R. T. Conant, C. E. P. Cerri, B. B. Osborne, K. Paustian, Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 27, 662–668 (2017).
43
R. C. Byrnes, D. J. Eastburn, K. W. Tate, L. M. Roche, A global meta-analysis of grazing impacts on soil health indicators. J. Environ. Qual. 47, 758–765 (2018).
44
G. Zhou, X. Zhou, Y. He, J. Shao, Z. Hu, R. Liu, H. Zhou, S. Hosseinibai, Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Glob. Chang. Biol. 23, 1167–1179 (2017).
45
M. E. McSherry, M. E. Ritchie, Effects of grazing on grassland soil carbon: A global review. Glob. Chang. Biol. 19, 1347–1357 (2013).
46
J. Sitters, D. M. Kimuyu, T. P. Young, P. Claeys, H. Olde Venterink, Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores. Nat. Sustain. 3, 360–366 (2020).
47
S. Mosier, S. Apfelbaum, P. Byck, F. Calderon, R. Teague, R. Thompson, M. F. Cotrufo, Adaptive multi-paddock grazing enhances soil carbon and nitrogen stocks and stabilization through mineral association in southeastern U.S. grazing lands. J. Environ. Manage. 288, 112409 (2021).
48
Y. F. Bai, Q. M. Pan, Q. Xing, Fundamental theories and technologies for optimizing the production functions and ecological functions in grassland ecosystems. Chin. Sci. Bull. 61, 201–212 (2016).
49
G.-L. Wu, Y. Liu, F.-P. Tian, Z.-H. Shi, Legumes functional group promotes soil organic carbon and nitrogen storage by increasing plant diversity. Land Degrad. Dev. 28, 1336–1344 (2017).
50
K. Gravuer, S. Gennet, H. L. Throop, Organic amendment additions to rangelands: A meta-analysis of multiple ecosystem outcomes. Glob. Chang. Biol. 25, 1152–1170 (2019).
51
B. W. Griscom, J. Adams, P. W. Ellis, R. A. Houghton, G. Lomax, D. A. Miteva, W. H. Schlesinger, D. Shoch, J. V. Siikamäki, P. Smith, P. Woodbury, C. Zganjar, A. Blackman, J. Campari, R. T. Conant, C. Delgado, P. Elias, T. Gopalakrishna, M. R. Hamsik, M. Herrero, J. Kiesecker, E. Landis, L. Laestadius, S. M. Leavitt, S. Minnemeyer, S. Polasky, P. Potapov, F. E. Putz, J. Sanderman, M. Silvius, E. Wollenberg, J. Fargione, Natural climate solutions. Proc. Natl. Acad. Sci. U.S.A. 114, 11645–11650 (2017).
52
G. B. De Deyn, R. S. Shiel, N. J. Ostle, N. P. McNamara, S. Oakley, I. Young, C. Freeman, N. Fenner, H. Quirk, R. D. Bardgett, Additional carbon sequestration benefits of grassland diversity restoration. J. Appl. Ecol. 48, 600–608 (2011).
53
J. E. Fargione, S. Bassett, T. Boucher, S. D. Bridgham, R. T. Conant, S. C. Cook-Patton, P. W. Ellis, A. Falcucci, J. W. Fourqurean, T. Gopalakrishna, H. Gu, B. Henderson, M. D. Hurteau, K. D. Kroeger, T. Kroeger, T. J. Lark, S. M. Leavitt, G. Lomax, R. I. McDonald, J. P. Megonigal, D. A. Miteva, C. J. Richardson, J. Sanderman, D. Shoch, S. A. Spawn, J. W. Veldman, C. A. Williams, P. B. Woodbury, C. Zganjar, M. Baranski, P. Elias, R. A. Houghton, E. Landis, E. McGlynn, W. H. Schlesinger, J. V. Siikamaki, A. E. Sutton-Grier, B. W. Griscom, Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).
54
L. Deng, Z.-P. Shangguan, G.-L. Wu, X.-F. Chang, Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth Sci. Rev. 173, 84–95 (2017).
55
S. J. Chapman, in Carbon Capture: Sequestration and Storage, R. E. Hester, R. M. Harrison, Eds. (RSC Publishing, 2010), pp. 179–202.
56
F. Lu, H. Hu, W. Sun, J. Zhu, G. Liu, W. Zhuo, Q. Zhang, P. Shi, X. Liu, X. Wu, L. Zhang, X. Wei, L. Dai, K. Zhang, Y. Sun, S. Xue, W. Zhang, D. Xiong, L. Deng, B. Liu, L. Zhou, C. Zhang, X. Zheng, J. Cao, Y. Huang, N. He, G. Zhou, Y. Bai, Z. Zie, Z. Tang, B. Wu, J. Fang, G. Liu, G. Yu, Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. U.S.A. 115, 4039–4044 (2018).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 377 | Issue 6606
5 August 2022

Submission history

Received: 13 April 2022
Accepted: 15 June 2022
Published in print: 5 August 2022

Permissions

Request permissions for this article.

Acknowledgments

We thank S. P. Chen, J. Q. Tian, Y. J. Zhao, S. X. Zheng, Y. Wang, X. M. Lu, B. Tang, J. Man, and J. S. Su for discussion on the topic of grassland carbon sequestration.
Funding: This work was supported by the National Natural Science Foundation of China (grant no. 32192464) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDA23080000).
Author contributions: Y.F.B. conceived the concept, structure, and writing of the manuscript. M.F.C. contributed to the development of ideas and writing of the manuscript.
Competing interests: M.F.C. provides consulting services for C quester Analytics. Services are provided to a number of companies invested in soil carbon sequestration, including by the adoption of regenerative grazing management. The remaining authors declare no competing interests.
License information: Copyright © 2022 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.science.org/about/science-licenses-journal-article-reuse

Authors

Affiliations

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
Roles: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Visualization, Writing - original draft, and Writing - review & editing.
Department of Soil and Crop Science and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA.
Roles: Conceptualization, Visualization, and Writing - review & editing.

Funding Information

Notes

*
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Alterations in substrate stoichiometry control the responses of soil diazotrophs to nutrient enrichment, Soil Biology and Biochemistry, 179, (108975), (2023).https://doi.org/10.1016/j.soilbio.2023.108975
    Crossref
  2. Mapping the distribution, trends, and drivers of soil organic carbon in China from 1982 to 2019, Geoderma, 429, (116232), (2023).https://doi.org/10.1016/j.geoderma.2022.116232
    Crossref
  3. Do limits exist on potential woody cover of Brazilian savanna?, Ecological Indicators, 150, (110220), (2023).https://doi.org/10.1016/j.ecolind.2023.110220
    Crossref
  4. Divergent effects of moderate grazing duration on carbon sequestration between temperate and alpine grasslands in China, Science of The Total Environment, 858, (159621), (2023).https://doi.org/10.1016/j.scitotenv.2022.159621
    Crossref
  5. Evaluating the impacts of alternative grazing management practices on soil carbon sequestration and soil health indicators, Agriculture, Ecosystems & Environment, 342, (108234), (2023).https://doi.org/10.1016/j.agee.2022.108234
    Crossref
  6. Cessation of grazing stabilizes productivity through effects on species asynchrony and stability of shrub/semi-shrub plants in arid grasslands, Agriculture, Ecosystems & Environment, 348, (108411), (2023).https://doi.org/10.1016/j.agee.2023.108411
    Crossref
  7. Increased soil carbon storage through plant diversity strengthens with time and extends into the subsoil, Global Change Biology, 29, 9, (2627-2639), (2023).https://doi.org/10.1111/gcb.16641
    Crossref
  8. Determination of ecological restoration patterns based on water security and food security in arid regions, Agricultural Water Management, 278, (108171), (2023).https://doi.org/10.1016/j.agwat.2023.108171
    Crossref
  9. Soil organic carbon pool distribution and stability with grazing and topography in a Mongolian grassland, Agriculture, Ecosystems & Environment, 348, (108431), (2023).https://doi.org/10.1016/j.agee.2023.108431
    Crossref
  10. Responses of net ecosystem carbon budget and net global warming potential to long-term nitrogen deposition in a temperate grassland, CATENA, 225, (107015), (2023).https://doi.org/10.1016/j.catena.2023.107015
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media