Cross-biome synthesis of source versus sink limits to tree growth
Uncoupled carbon uptake and storage
Forests are expected to help mitigate climate change by sequestering carbon, with elevated carbon dioxide boosting photosynthesis and carbon uptake. However, the amount of carbon that can be stored in wood also depends on temperature, water, and nutrient availability. Cabon et al. examined temporal correlations between trees’ carbon uptake and woody growth by combining data on tree rings and gross primary productivity measures from 78 forests with carbon dioxide flux towers (see the Perspective by Green and Keenan). They found weak correlations between productivity and woody growth, which responded differently to seasonal temperatures and water availability. Their work shows that limits to tree growth, particularly in dry and cold areas, may constrain potential forest carbon storage. —BEL
Abstract
Uncertainties surrounding tree carbon allocation to growth are a major limitation to projections of forest carbon sequestration and response to climate change. The prevalence and extent to which carbon assimilation (source) or cambial activity (sink) mediate wood production are fundamentally important and remain elusive. We quantified source-sink relations across biomes by combining eddy-covariance gross primary production with extensive on-site and regional tree ring observations. We found widespread temporal decoupling between carbon assimilation and tree growth, underpinned by contrasting climatic sensitivities of these two processes. Substantial differences in assimilation-growth decoupling between angiosperms and gymnosperms were determined, as well as stronger decoupling with canopy closure, aridity, and decreasing temperatures. Our results reveal pervasive sink control over tree growth that is likely to be increasingly prominent under global climate change.
Get full access to this article
View all available purchase options and get full access to this article.
Already a subscriber or AAAS Member?Log In
Supplementary Materials
This PDF file includes:
References and Notes
1
P. Friedlingstein, M. O’Sullivan, M. W. Jones, R. M. Andrew, J. Hauck, A. Olsen, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, J. G. Canadell, P. Ciais, R. B. Jackson, S. Alin, L. E. O. C. Aragão, A. Arneth, V. Arora, N. R. Bates, M. Becker, A. Benoit-Cattin, H. C. Bittig, L. Bopp, S. Bultan, N. Chandra, F. Chevallier, L. P. Chini, W. Evans, L. Florentie, P. M. Forster, T. Gasser, M. Gehlen, D. Gilfillan, T. Gkritzalis, L. Gregor, N. Gruber, I. Harris, K. Hartung, V. Haverd, R. A. Houghton, T. Ilyina, A. K. Jain, E. Joetzjer, K. Kadono, E. Kato, V. Kitidis, J. I. Korsbakken, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, Z. Liu, D. Lombardozzi, G. Marland, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S.-I. Nakaoka, Y. Niwa, K. O’Brien, T. Ono, P. I. Palmer, D. Pierrot, B. Poulter, L. Resplandy, E. Robertson, C. Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, A. J. P. Smith, A. J. Sutton, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, G. van der Werf, N. Vuichard, A. P. Walker, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, X. Yue, S. Zaehle, Global Carbon Budget 2020. Earth Syst. Sci. Data12, 3269–3340 (2020).
2
T. A. M. Pugh, T. Rademacher, S. L. Shafer, J. Steinkamp, J. Barichivich, B. Beckage, V. Haverd, A. Harper, J. Heinke, K. Nishina, A. Rammig, H. Sato, A. Arneth, S. Hantson, T. Hickler, M. Kautz, B. Quesada, B. Smith, K. Thonicke, Understanding the uncertainty in global forest carbon turnover. Biogeosciences17, 3961–3989 (2020).
3
A. D. Friend, A. H. Eckes-Shephard, P. Fonti, T. T. Rademacher, C. B. K. Rathgeber, A. D. Richardson, R. H. Turton, On the need to consider wood formation processes in global vegetation models and a suggested approach. Ann. For. Sci.76, 49 (2019).
4
S. Fatichi, S. Leuzinger, C. Körner, Moving beyond photosynthesis: From carbon source to sink-driven vegetation modeling. New Phytol.201, 1086–1095 (2014).
5
F. Babst, A. D. Friend, M. Karamihalaki, J. Wei, G. von Arx, D. Papale, R. L. Peters, Modeling Ambitions Outpace Observations of Forest Carbon Allocation. Trends Plant Sci.26, 210–219 (2021).
6
C. Körner, Paradigm shift in plant growth control. Curr. Opin. Plant Biol.25, 107–114 (2015).
7
T. C. Hsiao, Plant Responses to Water Stress. Annu. Rev. Plant Physiol.24, 519–570 (1973).
8
B. Muller, F. Pantin, M. Génard, O. Turc, S. Freixes, M. Piques, Y. Gibon, Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot.62, 1715–1729 (2011).
9
R. L. Peters, K. Steppe, H. E. Cuny, D. J. W. De Pauw, D. C. Frank, M. Schaub, C. B. K. Rathgeber, A. Cabon, P. Fonti, Turgor - a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytol.229, 213–229 (2021).
10
I. Cornut, G. Le Maire, J.-P. Laclau, J. Guillemot, L. Mareschal, Y. Nouvellon, N. Delpierre, Potassium limitation of wood productivity: A review of elementary processes and ways forward to modelling illustrated by Eucalyptus plantations. For. Ecol. Manage.494, 119275 (2021).
11
A. Cabon, R. L. Peters, P. Fonti, J. Martínez-Vilalta, M. De Cáceres, Temperature and water potential co-limit stem cambial activity along a steep elevational gradient. New Phytol.226, 1325–1340 (2020).
12
G. Hoch, C. Körner, Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob. Ecol. Biogeogr.21, 861–871 (2012).
13
T. Klein, M. K.-F. Bader, S. Leuzinger, M. Mildner, P. Schleppi, R. T. W. Siegwolf, C. Körner, Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. J. Ecol.104, 1720–1733 (2016).
14
M. Jiang, B. E. Medlyn, J. E. Drake, R. A. Duursma, I. C. Anderson, C. V. M. Barton, M. M. Boer, Y. Carrillo, L. Castañeda-Gómez, L. Collins, K. Y. Crous, M. G. De Kauwe, B. M. Dos Santos, K. M. Emmerson, S. L. Facey, A. N. Gherlenda, T. E. Gimeno, S. Hasegawa, S. N. Johnson, A. Kännaste, C. A. Macdonald, K. Mahmud, B. D. Moore, L. Nazaries, E. H. J. Neilson, U. N. Nielsen, Ü. Niinemets, N. J. Noh, R. Ochoa-Hueso, V. S. Pathare, E. Pendall, J. Pihlblad, J. Piñeiro, J. R. Powell, S. A. Power, P. B. Reich, A. A. Renchon, M. Riegler, R. Rinnan, P. D. Rymer, R. L. Salomón, B. K. Singh, B. Smith, M. G. Tjoelker, J. K. M. Walker, A. Wujeska-Klause, J. Yang, S. Zaehle, D. S. Ellsworth, The fate of carbon in a mature forest under carbon dioxide enrichment. Nature580, 227–231 (2020).
15
A. P. Walker, M. G. De Kauwe, A. Bastos, S. Belmecheri, K. Georgiou, R. F. Keeling, S. M. McMahon, B. E. Medlyn, D. J. P. Moore, R. J. Norby, S. Zaehle, K. J. Anderson-Teixeira, G. Battipaglia, R. J. W. Brienen, K. G. Cabugao, M. Cailleret, E. Campbell, J. G. Canadell, P. Ciais, M. E. Craig, D. S. Ellsworth, G. D. Farquhar, S. Fatichi, J. B. Fisher, D. C. Frank, H. Graven, L. Gu, V. Haverd, K. Heilman, M. Heimann, B. A. Hungate, C. M. Iversen, F. Joos, M. Jiang, T. F. Keenan, J. Knauer, C. Körner, V. O. Leshyk, S. Leuzinger, Y. Liu, N. MacBean, Y. Malhi, T. R. McVicar, J. Penuelas, J. Pongratz, A. S. Powell, T. Riutta, M. E. B. Sabot, J. Schleucher, S. Sitch, W. K. Smith, B. Sulman, B. Taylor, C. Terrer, M. S. Torn, K. K. Treseder, A. T. Trugman, S. E. Trumbore, P. J. van Mantgem, S. L. Voelker, M. E. Whelan, P. A. Zuidema, Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol.229, 2413–2445 (2021).
16
A. V. Rocha, M. L. Goulden, A. L. Dunn, S. C. Wofsy, On linking interannual tree ring variability with observations of whole-forest CO2 flux. Glob. Change Biol.12, 1378–1389 (2006).
17
F. Babst, O. Bouriaud, D. Papale, B. Gielen, I. A. Janssens, E. Nikinmaa, A. Ibrom, J. Wu, C. Bernhofer, B. Köstner, T. Grünwald, G. Seufert, P. Ciais, D. Frank, Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol.201, 1289–1303 (2014).
18
N. Delpierre, D. Berveiller, E. Granda, E. Dufrêne, Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. New Phytol.210, 459–470 (2016).
19
C. Pappas, J. Maillet, S. Rakowski, J. L. Baltzer, A. G. Barr, T. A. Black, S. Fatichi, C. P. Laroque, A. M. Matheny, A. Roy, O. Sonnentag, T. Zha, Aboveground tree growth is a minor and decoupled fraction of boreal forest carbon input. Agric. For. Meteorol.290, 108030 (2020).
20
A. Teets, S. Fraver, D. Y. Hollinger, A. R. Weiskittel, R. S. Seymour, A. D. Richardson, Linking annual tree growth with eddy-flux measures of net ecosystem productivity across twenty years of observation in a mixed conifer forest. Agric. For. Meteorol.249, 479–487 (2018).
21
M. Lempereur, N. K. Martin-StPaul, C. Damesin, R. Joffre, J.-M. Ourcival, A. Rocheteau, S. Rambal, Growth duration is a better predictor of stem increment than carbon supply in a Mediterranean oak forest: Implications for assessing forest productivity under climate change. New Phytol.207, 579–590 (2015).
22
See supplementary materials.
23
M. del Río, M. Vergarechea, T. Hilmers, J. G. Alday, A. Avdagić, F. Binderh, M. Bosela, L. Dobor, D. I. Forrester, V. Halilović, A. Ibrahimspahić, M. Klopcic, M. Lévesque, T. A. Nagel, Z. Sitkova, G. Schütze, B. Stajić, D. Stojanović, E. Uhl, T. Zlatanov, R. Tognetti, H. Pretzsch, Effects of elevation-dependent climate warming on intra- and inter-specific growth synchrony in mixed mountain forests. For. Ecol. Manage.479, 118587 (2021).
24
S. Klesse, R. J. DeRose, C. H. Guiterman, A. M. Lynch, C. D. O’Connor, J. D. Shaw, M. E. K. Evans, Sampling bias overestimates climate change impacts on forest growth in the southwestern United States. Nat. Commun.9, 5336 (2018).
25
R. Zweifel, F. Sterck, A Conceptual Tree Model Explaining Legacy Effects on Stem Growth. Front. For. Glob. Change1, 9 (2018).
26
A. Gessler, K. Treydte, The fate and age of carbon - insights into the storage and remobilization dynamics in trees. New Phytol.209, 1338–1340 (2016).
27
C. M. Gough, C. S. Vogel, H. P. Schmid, H. B. Su, P. S. Curtis, Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agric. For. Meteorol.148, 158–170 (2008).
28
S. Mensah, R. Veldtman, A. E. Assogbadjo, R. Glèlè Kakaï, T. Seifert, Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol. Evol.6, 7546–7557 (2016).
29
F. Babst, O. Bouriaud, B. Poulter, V. Trouet, M. P. Girardin, D. C. Frank, Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv.5, eaat4313 (2019).
30
N. Delpierre, K. Soudani, C. François, G. Le Maire, C. Bernhofer, W. Kutsch, L. Misson, S. Rambal, T. Vesala, E. Dufrêne, Quantifying the influence of climate and biological drivers on the interannual variability of carbon exchanges in European forests through process-based modelling. Agric. For. Meteorol.154–155, 99–112 (2012).
31
J. Xia, S. Niu, P. Ciais, I. A. Janssens, J. Chen, C. Ammann, A. Arain, P. D. Blanken, A. Cescatti, D. Bonal, N. Buchmann, P. S. Curtis, S. Chen, J. Dong, L. B. Flanagan, C. Frankenberg, T. Georgiadis, C. M. Gough, D. Hui, G. Kiely, J. Li, M. Lund, V. Magliulo, B. Marcolla, L. Merbold, L. Montagnani, E. J. Moors, J. E. Olesen, S. Piao, A. Raschi, O. Roupsard, A. E. Suyker, M. Urbaniak, F. P. Vaccari, A. Varlagin, T. Vesala, M. Wilkinson, E. Weng, G. Wohlfahrt, L. Yan, Y. Luo, Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl. Acad. Sci. U.S.A.112, 2788–2793 (2015).
32
A. Potkay, T. Hölttä, A. T. Trugman, Y. Fan, Turgor-limited predictions of tree growth, height and metabolic scaling over tree lifespans. Tree Physiol.42, 229–252 (2022).
33
G. Pastorello, C. Trotta, E. Canfora, H. Chu, D. Christianson, Y.-W. Cheah, C. Poindexter, J. Chen, A. Elbashandy, M. Humphrey, P. Isaac, D. Polidori, M. Reichstein, A. Ribeca, C. van Ingen, N. Vuichard, L. Zhang, B. Amiro, C. Ammann, M. A. Arain, J. Ardö, T. Arkebauer, S. K. Arndt, N. Arriga, M. Aubinet, M. Aurela, D. Baldocchi, A. Barr, E. Beamesderfer, L. B. Marchesini, O. Bergeron, J. Beringer, C. Bernhofer, D. Berveiller, D. Billesbach, T. A. Black, P. D. Blanken, G. Bohrer, J. Boike, P. V. Bolstad, D. Bonal, J.-M. Bonnefond, D. R. Bowling, R. Bracho, J. Brodeur, C. Brümmer, N. Buchmann, B. Burban, S. P. Burns, P. Buysse, P. Cale, M. Cavagna, P. Cellier, S. Chen, I. Chini, T. R. Christensen, J. Cleverly, A. Collalti, C. Consalvo, B. D. Cook, D. Cook, C. Coursolle, E. Cremonese, P. S. Curtis, E. D’Andrea, H. da Rocha, X. Dai, K. J. Davis, B. Cinti, A. Grandcourt, A. Ligne, R. C. De Oliveira, N. Delpierre, A. R. Desai, C. M. Di Bella, P. D. Tommasi, H. Dolman, F. Domingo, G. Dong, S. Dore, P. Duce, E. Dufrêne, A. Dunn, J. Dušek, D. Eamus, U. Eichelmann, H. A. M. ElKhidir, W. Eugster, C. M. Ewenz, B. Ewers, D. Famulari, S. Fares, I. Feigenwinter, A. Feitz, R. Fensholt, G. Filippa, M. Fischer, J. Frank, M. Galvagno, M. Gharun, D. Gianelle, B. Gielen, B. Gioli, A. Gitelson, I. Goded, M. Goeckede, A. H. Goldstein, C. M. Gough, M. L. Goulden, A. Graf, A. Griebel, C. Gruening, T. Grünwald, A. Hammerle, S. Han, X. Han, B. U. Hansen, C. Hanson, J. Hatakka, Y. He, M. Hehn, B. Heinesch, N. Hinko-Najera, L. Hörtnagl, L. Hutley, A. Ibrom, H. Ikawa, M. Jackowicz-Korczynski, D. Janouš, W. Jans, R. Jassal, S. Jiang, T. Kato, M. Khomik, J. Klatt, A. Knohl, S. Knox, H. Kobayashi, G. Koerber, O. Kolle, Y. Kosugi, A. Kotani, A. Kowalski, B. Kruijt, J. Kurbatova, W. L. Kutsch, H. Kwon, S. Launiainen, T. Laurila, B. Law, R. Leuning, Y. Li, M. Liddell, J.-M. Limousin, M. Lion, A. J. Liska, A. Lohila, A. López-Ballesteros, E. López-Blanco, B. Loubet, D. Loustau, A. Lucas-Moffat, J. Lüers, S. Ma, C. Macfarlane, V. Magliulo, R. Maier, I. Mammarella, G. Manca, B. Marcolla, H. A. Margolis, S. Marras, W. Massman, M. Mastepanov, R. Matamala, J. H. Matthes, F. Mazzenga, H. McCaughey, I. McHugh, A. M. S. McMillan, L. Merbold, W. Meyer, T. Meyers, S. D. Miller, S. Minerbi, U. Moderow, R. K. Monson, L. Montagnani, C. E. Moore, E. Moors, V. Moreaux, C. Moureaux, J. W. Munger, T. Nakai, J. Neirynck, Z. Nesic, G. Nicolini, A. Noormets, M. Northwood, M. Nosetto, Y. Nouvellon, K. Novick, W. Oechel, J. E. Olesen, J.-M. Ourcival, S. A. Papuga, F.-J. Parmentier, E. Paul-Limoges, M. Pavelka, M. Peichl, E. Pendall, R. P. Phillips, K. Pilegaard, N. Pirk, G. Posse, T. Powell, H. Prasse, S. M. Prober, S. Rambal, Ü. Rannik, N. Raz-Yaseef, C. Rebmann, D. Reed, V. R. Dios, N. Restrepo-Coupe, B. R. Reverter, M. Roland, S. Sabbatini, T. Sachs, S. R. Saleska, E. P. Sánchez-Cañete, Z. M. Sanchez-Mejia, H. P. Schmid, M. Schmidt, K. Schneider, F. Schrader, I. Schroder, R. L. Scott, P. Sedlák, P. Serrano-Ortíz, C. Shao, P. Shi, I. Shironya, L. Siebicke, L. Šigut, R. Silberstein, C. Sirca, D. Spano, R. Steinbrecher, R. M. Stevens, C. Sturtevant, A. Suyker, T. Tagesson, S. Takanashi, Y. Tang, N. Tapper, J. Thom, M. Tomassucci, J.-P. Tuovinen, S. Urbanski, R. Valentini, M. van der Molen, E. van Gorsel, K. van Huissteden, A. Varlagin, J. Verfaillie, T. Vesala, C. Vincke, D. Vitale, N. Vygodskaya, J. P. Walker, E. Walter-Shea, H. Wang, R. Weber, S. Westermann, C. Wille, S. Wofsy, G. Wohlfahrt, S. Wolf, W. Woodgate, Y. Li, R. Zampedri, J. Zhang, G. Zhou, D. Zona, D. Agarwal, S. Biraud, M. Torn, D. Papale, The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data7, 225 (2020).
34
M. Reichstein, E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J.-M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, R. Valentini, On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Change Biol.11, 1424–1439 (2005).
35
T. Wutzler, A. Lucas-Moffat, M. Migliavacca, J. Knauer, K. Sickel, L. Šigut, O. Menzer, M. Reichstein, Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences15, 5015–5030 (2018).
36
R. Guerrieri, S. Belmecheri, S. V. Ollinger, H. Asbjornsen, K. Jennings, J. Xiao, B. D. Stocker, M. Martin, D. Y. Hollinger, R. Bracho-Garrillo, K. Clark, S. Dore, T. Kolb, J. W. Munger, K. Novick, A. D. Richardson, Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl. Acad. Sci. U.S.A.116, 16909–16914 (2019).
37
S. Zhao, N. Pederson, L. D’Orangeville, J. HilleRisLambers, E. Boose, C. Penone, B. Bauer, Y. Jiang, R. D. Manzanedo, The International Tree-Ring Data Bank (ITRDB) revisited: Data availability and global ecological representativity. J. Biogeogr.46, 355–368 (2019).
38
E. Martínez-Sancho, L. Slámová, S. Morganti, C. Grefen, B. Carvalho, B. Dauphin, C. Rellstab, F. Gugerli, L. Opgenoorth, K. Heer, F. Knutzen, G. von Arx, F. Valladares, S. Cavers, B. Fady, R. Alía, F. Aravanopoulos, C. Avanzi, F. Bagnoli, E. Barbas, C. Bastien, R. Benavides, F. Bernier, G. Bodineau, C. C. Bastias, J.-P. Charpentier, J. M. Climent, M. Corréard, F. Courdier, D. Danusevicius, A.-M. Farsakoglou, J. M. G. Del Barrio, O. Gilg, S. C. González-Martínez, A. Gray, C. Hartleitner, A. Hurel, A. Jouineau, K. Kärkkäinen, S. T. Kujala, M. Labriola, M. Lascoux, M. Lefebvre, V. Lejeune, G. Le-Provost, M. Liesebach, E. Malliarou, N. Mariotte, S. Matesanz, C. Michotey, P. Milesi, T. Myking, E. Notivol, B. Pakull, A. Piotti, C. Plomion, M. Pringarbe, T. Pyhäjärvi, A. Raffin, J. A. Ramírez-Valiente, K. Ramskogler, J. J. Robledo-Arnuncio, O. Savolainen, S. Schueler, V. Semerikov, I. Spanu, J. Thévenet, M. Mette Tollefsrud, N. Turion, D. Veisse, G. G. Vendramin, M. Villar, J. Westin, P. Fonti, The GenTree Dendroecological Collection, tree-ring and wood density data from seven tree species across Europe. Sci. Data7, 1–7 (2020).
39
S. Klesse, F. Babst, S. Lienert, R. Spahni, F. Joos, O. Bouriaud, M. Carrer, A. Di Filippo, B. Poulter, V. Trotsiuk, R. Wilson, D. C. Frank, A Combined Tree Ring and Vegetation Model Assessment of European Forest Growth Sensitivity to Interannual Climate Variability. Global Biogeochem. Cycles32, 1–2 (2018).
40
F. Babst, B. Poulter, V. Trouet, K. Tan, B. Neuwirth, R. Wilson, M. Carrer, M. Grabner, W. Tegel, T. Levanic, M. Panayotov, C. Urbinati, O. Bouriaud, P. Ciais, D. Frank, Site- and species-specific responses of forest growth to climate across the European continent. Glob. Ecol. Biogeogr.22, 706–717 (2013).
41
A. G. Bunn, A dendrochronology program library in R (dplR). Dendrochronologia26, 115–124 (2008).
42
J. T. Abatzoglou, S. Z. Dobrowski, S. A. Parks, K. C. Hegewisch, TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data5, 170191 (2018).
43
R. Gelaro, W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. da Silva, W. Gu, G.-K. Kim, R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schubert, M. Sienkiewicz, B. Zhao, The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim.30, 5419–5454 (2017).
44
S. L. Tuck, H. R. P. Phillips, R. E. Hintzen, J. P. W. Scharlemann, A. Purvis, L. N. Hudson, MODISTools - downloading and processing MODIS remotely sensed data in R. Ecol. Evol.4, 4658–4668 (2014).
45
R Core Team, www.R-project.org/ (2020).
46
H. E. Beck, N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, E. F. Wood, Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data5, 180214 (2018).
47
H. Poorter, A. M. Jagodzinski, R. Ruiz-Peinado, S. Kuyah, Y. Luo, J. Oleksyn, V. A. Usoltsev, T. N. Buckley, P. B. Reich, L. Sack, How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol.208, 736–749 (2015).
48
D. C. LeBlanc, Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountain, New York. Can. J. For. Res.20, 1399–1407 (1990).
49
M. Jung, C. Schwalm, M. Migliavacca, S. Walther, G. Camps-Valls, S. Koirala, P. Anthoni, S. Besnard, P. Bodesheim, N. Carvalhais, F. Chevallier, F. Gans, D. S. Goll, V. Haverd, P. Köhler, K. Ichii, A. K. Jain, J. Liu, D. Lombardozzi, J. E. M. S. Nabel, J. A. Nelson, M. O’Sullivan, M. Pallandt, D. Papale, W. Peters, J. Pongratz, C. Rödenbeck, S. Sitch, G. Tramontana, A. Walker, U. Weber, M. Reichstein, Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences17, 1343–1365 (2020).
50
D. Baldocchi, J. Penuelas, The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Change Biol.25, 1191–1197 (2019).
51
G. Tramontana, M. Migliavacca, M. Jung, M. Reichstein, T. F. Keenan, G. Camps-Valls, J. Ogee, J. Verrelst, D. Papale, Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks. Glob. Change Biol.26, 5235–5253 (2020).
52
L. Misson, D. D. Baldocchi, T. A. Black, P. D. Blanken, Y. Brunet, J. Curiel Yuste, J. R. Dorsey, M. Falk, A. Granier, M. R. Irvine, N. Jarosz, E. Lamaud, S. Launiainen, B. E. Law, B. Longdoz, D. Loustau, M. McKay, K. T. Paw U, T. Vesala, D. Vickers, K. B. Wilson, A. H. Goldstein, Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: A synthesis based on FLUXNET data. Agric. For. Meteorol.144, 14–31 (2007).
53
D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw.67, 1 (2015).
54
S. Kim, https://CRAN.R-project.org/package=ppcor (2015).
55
R. E. Ricklefs, Ecology: The Economy of Nature (Freeman, ed. 6, 2008).
Information & Authors
Information
Published In

Science
Volume 376 | Issue 6594
13 May 2022
13 May 2022
Copyright
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
This is an article distributed under the terms of the Science Journals Default License.
Submission history
Received: 21 September 2021
Accepted: 16 February 2022
Published in print: 13 May 2022
Acknowledgments
We thank C. Hanson, S. Wharton, R. Brooks, and S. Klesse for contributing data to this study, as well as contributors at the International Tree-Ring Data Bank, FLUXNET, and AmeriFlux.
Funding: Supported by USDA National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Program, Ecosystem Services and Agro-Ecosystem Management, grant 2018-67019-27850 (A.C., S.A.K., and W.R.L.A.); the David and Lucile Packard Foundation and NSF grants 1714972, 1802880, 2044937, and 2003017 (W.R.L.A.); NSF Ecosystem Science cluster grant 1753845, USDA Forest Service Forest Health Protection Evaluation Monitoring program grant 19-05, and DOE Environmental System Science program grant DE-SC0022052 (S.A.K.); Arctic Challenge for Sustainability II grant JPMXD1420318865 (M.U.); USDA National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Program grant 2017-67013-26191 (J.T.M.); and DOE Office of Biological and Environmental Research grant DE-SC0010611 and NSF Directorate for Biological Sciences grant 1241851 (D.J.M.). Funding for the AmeriFlux data portal was provided by the US Department of Energy Office of Science.
Author contributions: Conceptualization: A.C., W.R.L.A. Methodology: A.C., W.R.L.A., S.A.K. Data contributions: All co-authors. Investigation: A.C., W.R.L.A., S.A.K. Visualization: A.C. Funding acquisition: W.R.L.A. Writing–original draft: A.C., W.R.L.A., S.A.K. Writing–review and editing: All co-authors.
Competing interests: The authors declare that they have no competing interests.
Data and materials availability: All processed data used for the analyses are available on Dryad (DOI: 10.5061/dryad.15dv41nzt) and the code is available on Zenodo (DOI: 10.5281/zenodo.6033963).
Authors
Funding Information
Neurosciences Foundation: DE-SC0022052
US National Science Foundation: 1714972, 1802880, 2044937, and 2003017
David and Lucille Packard Foundation
U.S. Department of Energy Office of Science
Arctic Challenge for Sustainability II: ArCS II; JPMXD1420318865
USDA National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Programme, Ecosystem Services and Agro-Ecosystem Management: 2018-67019-27850
US National Science Foundation Ecosystem Science cluster: 1753845
USDA Forest Service Forest Health Protection Evaluation Monitoring program: 19-05
DOE Environmental System Science: DOE DE-SC0022052
NSF Directorate for Biological Sciences: 1241851
DOE Office of Biological and Environmental Research: DE-SC0010611
US Department of Agriculture National Institute of Food and Agriculture, Agricultural and Food Research Initiative Competitive Program: 20176701326191
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Export citation
Select the format you want to export the citation of this publication.
Cited by
- The limits of forest carbon sequestration, Science, 376, 6594, (692-693), (2022)./doi/10.1126/science.abo6547
Loading...
View Options
Get Access
Log in to view the full text
AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.
- Become a AAAS Member
- Activate your AAAS ID
- Purchase Access to Other Journals in the Science Family
- Account Help
Log in via OpenAthens.
Log in via Shibboleth.
More options
Purchase digital access to this article
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
View options
PDF format
Download this article as a PDF file
Download PDF