Advertisement

Coupling light and heat

Understanding of the topological features of bandgaps has provided a route for engineering optical structures that exhibit directional propagation of light and are robust to defects. Guddala et al. combined a silicon-based topological photonic crystal with an atomic monolayer of hexagonal boron nitride (hBN). The topological features of the photonic crystal are coupled to the lattice vibrations of the hBN through the formation of phonon-polaritons. Funneling of helical infrared phonons along arbitrary pathways and across sharp bends provides the possibility of realizing directional heat dissipation along topologically resilient heat sinks. —ISO

Abstract

Topological photonics offers enhanced control over electromagnetic fields by providing a platform for robust trapping and guiding of topological states of light. By combining the strong coupling between topological photons with phonons in hexagonal boron nitride (hBN), we demonstrate a platform to control and guide hybrid states of light and lattice vibrations. The observed topological edge states of phonon-polaritons are found to carry nonzero angular momentum locked to their propagation direction, which enables their robust transport. Thus, these topological quasiparticles enable the funneling of infrared phonons mediated by helical infrared photons along arbitrary pathways and across sharp bends, thereby offering opportunities for applications ranging from Raman and vibrational spectroscopy with structured phonon-polaritons to directional heat dissipation.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Materials

This PDF file includes:

Materials and Methods
Supplementary Text
Figs. S1 to S8
References (3239)

References and Notes

1
L. Lu, J. D. Joannopoulos, M. Soljačić, Topological photonics. Nat. Photonics 8, 821–829 (2014).
2
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto, Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
3
Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, B. Zhang, Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).
4
S. D. Huber, Topological mechanics. Nat. Phys. 12, 621–623 (2016).
5
B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, B. Kanté, Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).
6
G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, M. Segev, Topological insulator laser: Theory. Science 359, eaar4003 (2018).
7
M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, M. Khajavikhan, Topological insulator laser: Experiments. Science 359, eaar4005 (2018).
8
D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, F. Nori, Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems. Phys. Rev. Lett. 118, 040401 (2017).
9
S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechtsman, A. Szameit, Topologically protected bound states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).
10
D. Smirnova, D. Leykam, Y. Chong, Y. Kivshar, Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).
11
L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M. Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Konotop, L. Torner, D. Bauer, A. Szameit, Nonlinearity-induced photonic topological insulator. Science 370, 701–704 (2020).
12
S. Mukherjee, M. C. Rechtsman, Observation of Floquet solitons in a topological bandgap. Science 368, 856–859 (2020).
13
D. N. Basov, M. M. Fogler, F. J. García de Abajo, Polaritons in van der Waals materials. Science 354, aag1992 (2016).
14
V. Peano, C. Brendel, M. Schmidt, F. Marquardt, Topological phases of sound and light. Phys. Rev. X 5, 031011 (2015).
15
T. Karzig, C. E. Bardyn, N. H. Lindner, G. Refael, Topological polaritons. Phys. Rev. X 5, 031001 (2015).
16
A. V. Nalitov, D. D. Solnyshkov, G. Malpuech, Polariton Z topological insulator. Phys. Rev. Lett. 114, 116401 (2015).
17
M. Milićević, T. Ozawa, P. Andreakou, I. Carusotto, T. Jacqmin, E. Galopin, A. Lemaître, L. Le Gratiet, I. Sagnes, J. Bloch, A. Amo, Edge states in polariton honeycomb lattices. 2D Mater. 2, 034012 (2015).
18
S. Klembt, T. H. Harder, O. A. Egorov, K. Winkler, R. Ge, M. A. Bandres, M. Emmerling, L. Worschech, T. C. H. Liew, M. Segev, C. Schneider, S. Höfling, Exciton-polariton topological insulator. Nature 562, 552–556 (2018).
19
W. Liu, Z. Ji, Y. Wang, G. Modi, M. Hwang, B. Zheng, V. J. Sorger, A. Pan, R. Agarwal, Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).
20
M. Li, I. Sinev, F. Benimetskiy, T. Ivanova, E. Khestanova, S. Kiriushechkina, A. Vakulenko, S. Guddala, M. Skolnick, V. M. Menon, D. Krizhanovskii, A. Alù, A. Samusev, A. B. Khanikaev, Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).
21
L. H. Wu, X. Hu, Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).
22
S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, E. Waks, A topological quantum optics interface. Science 359, 666–668 (2018).
23
N. Parappurath, F. Alpeggiani, L. Kuipers, E. Verhagen, Direct observation of topological edge states in silicon photonic crystals: Spin, dispersion, and chiral routing. Sci. Adv. 6, eaaw4137 (2020).
24
S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, D. N. Basov, Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).
25
M. Autore, P. Li, I. Dolado, F. J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L. E. Hueso, P. Alonso-González, J. Aizpurua, A. Y. Nikitin, S. Vélez, R. Hillenbrand, Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).
26
J. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B. Gil, D. N. Basov, Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).
27
See the supplementary materials.
28
R. Süsstrunk, S. D. Huber, Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).
29
J. P. Mathew, J. del Pino, E. Verhagen, Synthetic gauge fields for phonon transport in a nano-optomechanical system. Nat. Nanotechnol. 15, 198–202 (2020).
30
H. Ren, T. Shah, H. Pfeifer, C. Brendel, V. Peano, F. Marquardt, O. Painter, Topological phonon transport in an optomechanical system. arXiv:2009.06174 [cond-mat.mes-hall] (2020).
31
S. Guddala, F. Komissarenko, S. Kiriushechkina, A. Vakulenko, M. Li, V. Menon, A. Alù, A. Khanikaev, Topological phonon-polariton funneling in mid-infrared metasurfaces, version 2, Zenodo (2021); https://doi.org/10.5281/zenodo.5524881.
32
F. J. Alfaro-Mozaz, S. G. Rodrigo, P. Alonso-González, S. Vélez, I. Dolado, F. Casanova, L. E. Hueso, L. Martín-Moreno, R. Hillenbrand, A. Y. Nikitin, Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material. Nat. Commun. 10, 42 (2019).
33
V. Savona, L. C. Andreani, P. Schwendimann, A. Quattropani, Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes. Solid State Commun. 93, 733–739 (1995).
34
M. A. Gorlach, X. Ni, D. A. Smirnova, D. Korobkin, D. Zhirihin, A. P. Slobozhanyuk, P. A. Belov, A. Alù, A. B. Khanikaev, Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 9, 909 (2018).
35
S. Raghu, F. D. M. Haldane, Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).
36
A. Raman, S. Fan, Photonic band structure of dispersive metamaterials formulated as a Hermitian eigenvalue problem. Phys. Rev. Lett. 104, 087401 (2010).
37
B. A. Bernevig, T. L. Hughes, S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).
38
A. Bers, Note on group velocity and energy propagation. Am. J. Phys. 68, 482–484 (2000).
39
K. Y. Bliokh, A. Y. Bekshaev, F. Nori, Optical momentum and angular momentum in complex media: From the Abraham–Minkowski debate to unusual properties of surface plasmon-polaritons. New J. Phys. 19, 123014 (2017).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 374 | Issue 6564
8 October 2021

Submission history

Received: 19 May 2021
Accepted: 31 August 2021
Published in print: 8 October 2021

Permissions

Request permissions for this article.

Acknowledgments

Funding: The work was supported by the ONR award N00014-21-1-2092, NSF grants DMR-1809915 and OMA-1936351, the DARPA Nascent program, and the Simons Collaboration on Extreme Wave Phenomena. A.A. acknowledges support by ONR award N00014-19-1-2011 and a Vannevar Bush Faculty Fellowship. Author contributions: A.B.K. and S.G. conceived the project. S.G., F.K., S.K., and A.V. performed the experiments. A.B.K., M.L., S.G., A.V., and S.K. performed theoretical studies. A.B.K., A.A., and V.M.M. supervised the research. A.B.K. and S.G. wrote the manuscript with input from all coauthors. Competing interests: The authors declare no competing interests. Data and materials availability: All data are deposited at Zenodo (31).

Authors

Affiliations

Department of Electrical Engineering, Grove School of Engineering, City College of the City University of New York, New York, NY 10031, USA.
Department of Physics, City College of New York, New York, NY 10031, USA.
Roles: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.
Department of Electrical Engineering, Grove School of Engineering, City College of the City University of New York, New York, NY 10031, USA.
Department of Physics, City College of New York, New York, NY 10031, USA.
Roles: Investigation and Visualization.
Department of Electrical Engineering, Grove School of Engineering, City College of the City University of New York, New York, NY 10031, USA.
Roles: Formal analysis, Investigation, and Visualization.
Department of Electrical Engineering, Grove School of Engineering, City College of the City University of New York, New York, NY 10031, USA.
Roles: Formal analysis, Investigation, Software, and Visualization.
Department of Electrical Engineering, Grove School of Engineering, City College of the City University of New York, New York, NY 10031, USA.
Department of Physics, City College of New York, New York, NY 10031, USA.
Physics Program, Graduate Center of the City University of New York, New York, NY 10016, USA.
Roles: Data curation, Formal analysis, Methodology, Software, Validation, Visualization, and Writing - review & editing.
Department of Physics, City College of New York, New York, NY 10031, USA.
Physics Program, Graduate Center of the City University of New York, New York, NY 10016, USA.
Roles: Conceptualization, Funding acquisition, Methodology, Project administration, and Visualization.
Department of Electrical Engineering, Grove School of Engineering, City College of the City University of New York, New York, NY 10031, USA.
Physics Program, Graduate Center of the City University of New York, New York, NY 10016, USA.
Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, USA.
Roles: Conceptualization, Funding acquisition, Methodology, Project administration, Supervision, and Writing - review & editing.
Department of Electrical Engineering, Grove School of Engineering, City College of the City University of New York, New York, NY 10031, USA.
Department of Physics, City College of New York, New York, NY 10031, USA.
Physics Program, Graduate Center of the City University of New York, New York, NY 10016, USA.
Roles: Conceptualization, Data curation, Funding acquisition, Methodology, Project administration, Software, Supervision, Visualization, Writing - original draft, and Writing - review & editing.

Funding Information

Office of Naval Research: N00014-21-1-2092
Office of Naval Research: N00014-19-1-2011
QII TAQS: OMA-1936351

Notes

*
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals, Science Advances, 8, 30, (2022)./doi/10.1126/sciadv.abn9774
    Abstract
  2. undefined, Conference on Lasers and Electro-Optics, (SF4K.5), (2022).https://doi.org/10.1364/CLEO_SI.2022.SF4K.5
    Crossref
  3. Topological Photonic Crystals: Physics, Designs, and Applications, Laser & Photonics Reviews, 16, 4, (2100300), (2022).https://doi.org/10.1002/lpor.202100300
    Crossref
  4. Investigation of three topological edge states in honeycomb lattices based on graphene plasmonic crystal, Journal of Physics D: Applied Physics, 55, 27, (275102), (2022).https://doi.org/10.1088/1361-6463/ac63fd
    Crossref
  5. Interfacial topological photonics: broadband silicon waveguides for THz 6G communication and beyond, Optics Express, 30, 18, (33035), (2022).https://doi.org/10.1364/OE.468010
    Crossref
  6. Optical Metasurfaces for Energy Conversion, Chemical Reviews, 122, 19, (15082-15176), (2022).https://doi.org/10.1021/acs.chemrev.2c00078
    Crossref
  7. Dual-band all-dielectric chiral photonic crystal, Journal of Physics D: Applied Physics, 55, 16, (165303), (2022).https://doi.org/10.1088/1361-6463/ac4768
    Crossref
  8. Three-Dimensional Printed Planar Polymer Photonic Topological Insulator Waveguides and Their Robustness to Lattice Defects, ACS Photonics, 9, 5, (1793-1802), (2022).https://doi.org/10.1021/acsphotonics.2c00332
    Crossref
  9. Twisted Polaritonic Crystals in Thin van der Waals Slabs, Laser & Photonics Reviews, 16, 9, (2200428), (2022).https://doi.org/10.1002/lpor.202200428
    Crossref
  10. Electrically tunable metasurfaces: from direct to indirect mechanisms, New Journal of Physics, 24, 7, (075001), (2022).https://doi.org/10.1088/1367-2630/ac7c84
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media