Advertisement

Resilience to tipping points in ecosystems

Spatial pattern formation has been proposed as an early warning signal for dangerous tipping points and imminent critical transitions in complex systems, including ecosystems. Rietkerk et al. review how ecosystems and Earth system components can actually evade catastrophic tipping through various pathways of spatial pattern formation. With mathematical and real-world examples, they argue that evading tipping and enhancing resilience could be relevant for many ecosystems and Earth system components that until now were known as tipping prone. Many of these complex systems may be more resilient than currently thought because of overlooked spatial dynamics and multiple stable states, and may thus not undergo critical or catastrophic transitions with global change. —AMS

Structured Abstract

BACKGROUND

In the Anthropocene, there is a need to better understand the catastrophic effects that climate and land-use change may have on ecosystems, Earth system components, and the whole Earth system. The concept of critical transitions, or tipping from one state to another, contributes to this understanding. Tipping occurs in a system when it is forced outside the basin of attraction of the original equilibrium, resulting in a critical transition to an alternative, often less-desirable, stable state. In this context, the search for early warning signals for such imminent critical transitions has become a focus of research. In particular, spatial self-organization in ecosystems, such as the spontaneous formation of regular vegetation patterns—so-called Turing patterns—has been suggested as a prominent early warning signal.

ADVANCES

However, recent findings indicate that such spatial self-organization should not necessarily be interpreted as an early warning signal for critical transitions. Instead, spatial self-organization can cause ecosystems to evade tipping points and can thereby be a signal of resilience. These findings are based on recent mathematical analyses of spatial models and on observations of real ecosystems. Both have revealed multistability, meaning that many different spatial patterns can co-occur under the same environmental conditions, and each of these patterns can stay stable for a wide range of conditions. This enables complex system states to persist beyond tipping points through spatial self-organization. Moreover, if a complex system with tipping properties experiences a perturbation, subsequent change of the system does not necessarily lead to tipping of the complete system. Instead, the change can stay localized because the system allows for alternative states to coexist in space—thus referred to as coexistence states. These spatial patterns can also persist beyond tipping points with worsening conditions through this alternative pathway. We refer to both Turing patterns and coexistence states as spatial pattern formation. Evasion of tipping through these various pathways of spatial pattern formation may be relevant for many ecosystems and Earth system components that were hitherto interpreted as prone to tipping, including for Earth as a whole.

OUTLOOK

To further study how complex systems evade tipping through spatial pattern formation, savanna ecosystems can be considered as a concrete archetypal example because of the alternative states and spatial patterns observed for them. Moreover, universal conditions for evading tipping points in both ecosystems and Earth system components can be derived by mathematical analyses. Scenarios can be revealed by which Turing patterns with small amplitudes can grow and form large-scale localized interacting structures, thereby aiding complex systems to evade tipping. The effects that global change has on the spatial boundaries between coexistence states should be studied, and the impacts of restrictions of spatial domain and localized and nonlocal homogenizing effects by humans should be revealed. This approach will advance our understanding and predictions of critical transitions in nature and reveal how these may be avoided or reversed.
Evasion of tipping points.
We illustrate the response of complex systems to changes in external conditions (i.e., a bifurcation diagram). Homogeneous dark gray squares depict high density of the system state variable, and homogeneous light gray squares illustrate low density. (A) Classic view. (B) Multistability of Turing patterns. Recent model analysis has revealed multistability of Turing patterns in Busse balloons, supported by satellite observations of real ecosystems. A Busse balloon is the region in parameter space in mathematical models where multistability of patterned equilibria occurs. (C) Multistability of coexistence states. Evading tipping can also be the result of multistability of coexistence states. These spatial patterns originate in the bistability region before the tipping point; the evolving spatial patterns can also persist beyond the tipping point with worsening external conditions, thereby constituting an alternative pathway to evade tipping points.

Abstract

The concept of tipping points and critical transitions helps inform our understanding of the catastrophic effects that global change may have on ecosystems, Earth system components, and the whole Earth system. The search for early warning indicators is ongoing, and spatial self-organization has been interpreted as one such signal. Here, we review how spatial self-organization can aid complex systems to evade tipping points and can therefore be a signal of resilience instead. Evading tipping points through various pathways of spatial pattern formation may be relevant for many ecosystems and Earth system components that hitherto have been identified as tipping prone, including for the entire Earth system. We propose a systematic analysis that may reveal the broad range of conditions under which tipping is evaded and resilience emerges.

Get full access to this article

View all available purchase options and get full access to this article.

Already a subscriber or AAAS Member?

References and Notes

1
M. Scheffer, S. Carpenter, J. A. Foley, C. Folke, B. Walker, Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).
2
M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk, G. Sugihara, Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
3
W. Steffen, J. Rockström, K. Richardson, T. M. Lenton, C. Folke, D. Liverman, C. P. Summerhayes, A. D. Barnosky, S. E. Cornell, M. Crucifix, J. F. Donges, I. Fetzer, S. J. Lade, M. Scheffer, R. Winkelmann, H. J. Schellnhuber, Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. U.S.A. 115, 8252–8259 (2018).
4
J. van de Koppel, M. Rietkerk, F. J. Weissing, Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems. Trends Ecol. Evol. 12, 352–356 (1997).
5
M. Rietkerk, F. van den Bosch, J. van de Koppel, Site-specific properties and irreversible vegetation changes in semi-arid ecosystems. Oikos 80, 241–252 (1997).
6
M. Scheffer, S. H. Hosper, M.-L. Meijer, B. Moss, E. Jeppesen, Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8, 275–279 (1993).
7
M. Rietkerk, J. van de Koppel, Alternate stable states and threshold effects in semi-arid grazing systems. Oikos 79, 69–76 (1997).
8
M. Hirota, M. Holmgren, E. H. Van Nes, M. Scheffer, Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).
9
A. C. Staver, S. Archibald, S. A. Levin, The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).
10
A. C. Staver, S. A. Levin, Integrating theoretical climate and fire effects on savanna and forest systems. Am. Nat. 180, 211–224 (2012).
11
F. Van Langevelde, C. A. D. M. Van De Vijver, L. Kumar, J. Van De Koppel, N. De Ridder, J. Van Andel, A. K. Skidmore, J. W. Hearne, L. Stroosnijder, W. J. Bond, H. H. T. Prins, M. Rietkerk, Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84, 337–350 (2003).
12
J. C. Aleman, A. Fayolle, C. Favier, A. C. Staver, K. G. Dexter, C. M. Ryan, A. F. Azihou, D. Bauman, M. Te Beest, E. N. Chidumayo, J. A. Comiskey, J. P. G. M. Cromsigt, H. Dessard, J. L. Doucet, M. Finckh, J. F. Gillet, S. Gourlet-Fleury, G. P. Hempson, R. M. Holdo, B. Kirunda, F. N. Kouame, G. Mahy, F. M. P. Gonçalves, I. McNicol, P. N. Quintano, A. J. Plumptre, R. C. Pritchard, R. Revermann, C. B. Schmitt, A. M. Swemmer, H. Talila, E. Woollen, M. D. Swaine, Floristic evidence for alternative biome states in tropical Africa. Proc. Natl. Acad. Sci. U.S.A. 117, 28183–28190 (2020).
13
C. S. Holling, in Engineering Within Ecological Constraints, P. E. Schulze, Ed. (National Academy Press, 1996), pp. 31–43.
14
P. Ashwin, S. Wieczorek, R. Vitolo, P. Cox, Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system. Phil. Trans. R. Soc. A 370, 1166–1184 (2012).
15
T. M. Lenton, H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, H. J. Schellnhuber, Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. U.S.A. 105, 1786–1793 (2008).
16
S. Drijfhout, S. Bathiany, C. Beaulieu, V. Brovkin, M. Claussen, C. Huntingford, M. Scheffer, G. Sgubin, D. Swingedouw, Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl. Acad. Sci. U.S.A. 112, E5777–E5786 (2015).
17
P. Huybrechts, J. de Wolde, The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Clim. 12, 2169–2188 (1999).
18
F. Pattyn, M. Morlighem, The uncertain future of the Antarctic ice sheet. Science 367, 1331–1335 (2020).
19
J. Garbe, T. Albrecht, A. Levermann, J. F. Donges, R. Winkelmann, The hysteresis of the Antarctic ice sheet. Nature 585, 538–544 (2020).
20
T. F. Stocker, D. G. Wright, Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature 351, 729–732 (1991).
21
S. Rahmstorf, A. Ganopolsky, Long-term global warning scenario’s computed with an efficient coupled climate model. Clim. Change 43, 353–367 (1999).
22
J. Lohmann, P. D. Ditlevsen, Risk of tipping the overturning circulation due to increasing rates of ice melt. Proc. Natl. Acad. Sci. U.S.A. 118, e20179891 (2021).
23
J. Rockström, W. Steffen, K. Noone, A. Persson, F. S. Chapin 3rd, E. F. Lambin, T. M. Lenton, M. Scheffer, C. Folke, H. J. Schellnhuber, B. Nykvist, C. A. de Wit, T. Hughes, S. van der Leeuw, H. Rodhe, S. Sörlin, P. K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R. W. Corell, V. J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, J. A. Foley, A safe operating space for humanity. Nature 461, 472–475 (2009).
24
A. D. Barnosky, E. A. Hadly, J. Bascompte, E. L. Berlow, J. H. Brown, M. Fortelius, W. M. Getz, J. Harte, A. Hastings, P. A. Marquet, N. D. Martinez, A. Mooers, P. Roopnarine, G. Vermeij, J. W. Williams, R. Gillespie, J. Kitzes, C. Marshall, N. Matzke, D. P. Mindell, E. Revilla, A. B. Smith, Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).
25
M. Rietkerk, S. C. Dekker, P. C. de Ruiter, J. van de Koppel, Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).
26
A. M. Turing, The chemical basis of morphogenesis. Bull. Math. Biol. 52, 153–197 (1990).
27
C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999).
28
J. von Hardenberg, E. Meron, M. Shachak, Y. Zarmi, Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, 198101 (2001).
29
M. Rietkerk, M. C. Boerlijst, F. van Langevelde, R. Hillerislambers, Jv. de Koppel, L. Kumar, H. H. Prins, A. M. de Roos, Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524–530 (2002).
30
K. Gowda, H. Riecke, M. Silber, Transitions between patterned states in vegetation models for semiarid ecosystems. Phys. Rev. E 89, 022701 (2014).
31
M. Rietkerk, J. van de Koppel, Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23, 169–175 (2008).
32
K. Siteur, E. Siero, M. B. Eppinga, J. D. Rademacher, A. Doelman, M. Rietkerk, Beyond Turing: The response of patterned ecosystems to environmental change. Ecol. Complex. 20, 81–96 (2014).
33
R. Bastiaansen, O. Jaïbi, V. Deblauwe, M. B. Eppinga, K. Siteur, E. Siero, S. Mermoz, A. Bouvet, A. Doelman, M. Rietkerk, Multistability of model and real dryland ecosystems through spatial self-organization. Proc. Natl. Acad. Sci. U.S.A. 115, 11256–11261 (2018).
34
R. Bastiaansen, A. Doelman, M. B. Eppinga, M. Rietkerk, The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation. Ecol. Lett. 23, 414–429 (2020).
35
F. H. Busse, Non-linear properties of thermal convection. Rep. Prog. Phys. 41, 1929–1967 (1978).
36
R. H. Wang, Q. X. Liu, G. Q. Sun, Z. Jin, J. van de Koppel, Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds. J. R. Soc. Interface 6, 705–718 (2009).
37
Q. X. Liu, P. M. Herman, W. M. Mooij, J. Huisman, M. Scheffer, H. Olff, J. van de Koppel, Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nat. Commun. 5, 5234 (2014).
38
E. H. van Nes, M. Hirota, M. Holmgren, M. Scheffer, Tipping points in tropical tree cover: Linking theory to data. Glob. Change Biol. 20, 1016–1021 (2014).
39
J. Pastor, B. Peckham, S. Bridgham, J. Weltzin, J. Chen, Plant community dynamics, nutrient cycling, and alternative stable equilibria in peatlands. Am. Nat. 160, 553–568 (2002).
40
M. J. Donahue, R. A. Desharnais, C. D. Robles, P. Arriola, Mussel bed boundaries as dynamic equilibria: Thresholds, phase shifts, and alternative states. Am. Nat. 178, 612–625 (2011).
41
J. Van de Koppel, P. M. J. Herman, P. Thoolen, C. H. R. Heip, Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology 82, 3449–3461 (2001).
42
O. D. Vinent, L. J. Moore, Barrier island bistability induced by biophysical interactions. Nat. Clim. Chang. 5, 158–162 (2015).
43
T. Van der Heide, E. H. van Nes, G. W. Geerling, A. J. P. Smolders, T. J. Bouma, M. M. van Katwijk, Positive feedbacks in seagrass ecosystems: Implications for success in conservation and restoration. Ecosystems 10, 1311–1322 (2007).
44
T. van der Heide, T. J. Bouma, E. H. van Nes, J. van de Koppel, M. Scheffer, J. G. Roelofs, M. M. van Katwijk, A. J. Smolders, Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. Ecology 91, 362–369 (2010)
45
E. D. Lazarus, S. Armstrong, Self-organized pattern formation in coastal barrier washover deposits. Geology 43, 363–366 (2015).
46
D. Ruiz-Reynés, D. Gomila, T. Sintes, E. Hernández-García, N. Marbà, C. M. Duarte, Fairy circle landscapes under the sea. Sci. Adv. 3, e1603262 (2017).
47
V. Reijers, “A song of sand and mud: How plant-mediated feedbacks dictate landscape formation and dynamics of barrier islands,” thesis, Radboud University, Nijmegen (2019).
48
P. D. L. Ritchie, J. J. Clarke, P. M. Cox, C. Huntingford, Overshooting tipping point thresholds in a changing climate. Nature 592, 517–523 (2021).
49
H. Hillebrand, I. Donohue, W. S. Harpole, D. Hodapp, M. Kucera, A. M. Lewandowska, J. Merder, J. M. Montoya, J. A. Freund, Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).
50
G. Bel, A. Hagberg, E. Meron, Gradual regime shifts in spatially extended ecosystem. Theor. Ecol. 5, 591–604 (2012).
51
Y. R. Zelnik, E. Meron, Regime shifts by front dynamics. Ecol. Indic. 94, 544–552 (2018).
52
M. Ghil, Climate stability for a Sellers-type model. J. Atmos. Sci. 33, 3–20 (1976).
53
T. Bódai, V. Lucarini, F. Lunkeit, R. Boschi, Global instability in the Ghil–Sellers model. Clim. Dyn. 44, 3361–3381 (2015).
54
S. H. R. Rosier, R. Reese, J. F. Donges, J. de Rydt, G. H. Gudmudsson, R. Winkelmann, The tipping points and early-warning indicators for Pine Island Glacier, West Antarctica. Cryosphere 15, 1501–1516 (2021).
55
C. Fernandez-Oto, O. Tzuk, E. Meron, Front instabilities can reverse desertification. Phys. Rev. Lett. 122, 048101 (2019).
56
M. E. Cates, J. Tailleur, Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6, 219–244 (2015).
57
Q.-X. Liu, A. Doelman, V. Rottschäfer, M. de Jager, P. M. Herman, M. Rietkerk, J. van de Koppel, Phase separation explains a new class of self-organized spatial patterns in ecological systems. Proc. Natl. Acad. Sci. U.S.A. 110, 11905–11910 (2013).
58
Q.-X. Liu, M. Rietkerk, P. M. Herman, T. Piersma, J. M. Fryxell, J. van de Koppel, Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns. Phys. Life Rev. 19, 107–121 (2016).
59
E. Sheffer, J. von Hardenberg, H. Yizhaq, M. Shachak, E. Meron, Emerged or imposed: A theory on the role of physical templates and self-organisation for vegetation patchiness. Ecol. Lett. 16, 127–139 (2013).
60
R. J. Scholes, S. R. Archer, Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).
61
J. D. Anadon, O. E. Sala, F. T. Maestre, Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical Americas. J. Ecol. 102, 1363–1373 (2014).
62
M. Garcia Criado, I. H. Meyers-Smith, A. D. Bjorkman, C. E. R. Lehman, N. Stevens, Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 29, 925–943 (2020).
63
A. C. Staver, Prediction and scale in savanna ecosystems. New Phytol. 219, 52–57 (2018).
64
F. Accatino, C. De Michele, R. Vezzoli, D. Donzelli, R. J. Scholes, Tree–grass co-existence in savanna: Interactions of rain and fire. J. Theor. Biol. 267, 235–242 (2010).
65
M. Baudena, F. D’Andrea, A. Provenzale, An idealized model for tree-grass coexistence in savannas: The role of life stage structure and fire disturbances. J. Ecol. 98, 74–80 (2010).
66
V. de L. Dantas, M. Hirota, R. S. Oliveira, J. G. Pausas, Disturbance maintains alternative biome states. Ecol. Lett. 19, 12–19 (2016).
67
D. D’Onofrio, J. von Hardenberg, M. Baudena, Not only trees: Grasses determine African tropical biome distributions via water limitation and fire. Glob. Ecol. Biogeogr. 27, 714–725 (2018).
68
A. W. Cardoso, I. Oliveras, K. A. Abernethy, K. J. Jeffery, S. Glover, D. Lehmann, J. E. Ndong, L. J. T. White, W. J. Bond, Y. Malhi, A distinct ecotonal tree community exists at central African forest-savanna transitions. J. Ecol. 109, 1170–1183 (2021).
69
T. Charles-Dominique, G. F. Midgley, K. W. Tomlinson, W. J. Bond, Steal the light: Shade vs fire adapted vegetation in forest-savanna mosaics. New Phytol. 218, 1419–1429 (2018).
70
T. A. Groen, “Spatial matters: How spatial patterns and processes affect savanna dynamics,” thesis, Wageningen University (2007).
71
M. Baudena, M. Rietkerk, Complexity and coexistence in a simple spatial model for arid savanna ecosystems. Theor. Ecol. 6, 131–141 (2013).
72
R. Martínez-García, J. M. Calabrese, C. López, Spatial patterns in mesic savannas: The local facilitation limit and the role of demographic stochasticity. J. Theor. Biol. 333, 156–165 (2013).
73
T. A. Groen, C. A. D. M. van de Vijver, F. van Langevelde, Do spatially homogenizing and heterogenizing processes affect transitions between alternative stable states? Ecol. Modell. 65, 119–128 (2017).
74
S. Eby, A. Agrawal, S. Majumder, A. P. Dobson, V. Guttal, Alternative stable states and spatial indicators of critical slowing down along a spatial gradient in a savanna ecosystem. Glob. Ecol. Biogeogr. 26, 638–649 (2017).
75
L. Eigentler, J. A. Sherratt, Metastability as a coexistence mechanism in a model for dryland vegetation patterns. Bull. Math. Biol. 81, 2290–2322 (2019).
76
O. Tzuk, H. Uecker, E. Meron, The role of spatial self-organization in the design of agroforestry systems. PLOS ONE 15, e0236325 (2020).
77
B. Wuyts, A. R. Champneys, N. Verschueren, J. I. House, Tropical tree cover in a heterogeneous environment: A reaction-diffusion model. PLOS ONE 14, e0218151 (2019).
78
V. Yatat, P. Couteron, J. J. Tewa, S. Bowong, Y. Dumont, An impulsive modelling framework of fire occurrence in a size-structured model of tree-grass interactions for savanna ecosystems. J. Math. Biol. 74, 1425–1482 (2017).
79
V. Yatat, P. Couteron, Y. Dumont, Spatially explicit modelling of tree–grass interactions in fire-prone savannas: A partial differential equations framework. Ecol. Complex. 36, 290–313 (2018).
80
C. De Michele, F. Accatino, R. Vezzoli, R. J. Scholes, Savanna domain in the herbivores-fire parameter space exploiting a tree–grass–soil water dynamic model. J. Theor. Biol. 289, 74–82 (2011).
81
Q. Li, A. C. Staver, E. Weinan, S. A. Levin, Spatial feedbacks and the dynamics of savanna and forest. Theor. Ecol. 12, 237–262 (2019).
82
E. Siero, K. Siteur, A. Doelman, J. V. Koppel, M. Rietkerk, M. B. Eppinga, Grazing away the resilience of patterned ecosystems. Am. Nat. 193, 472–480 (2019).
83
R. M. Holdo, R. D. Holt, J. M. Fryxell, Herbivore-vegetation feedbacks can expand the range of savanna persistence: Insights from a simple theoretical model. Oikos 122, 441–453 (2013).
84
J. Sherratt, Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations. Appl. Math. Comput. 218, 4684–4694 (2012).
85
S. Van der Stelt, A. Doelman, G. M. Hek, J. Rademacher, Rise and fall of periodic patterns for a generalized Klausmeier–Gray–Scott model. J. Nonlinear Sci. 23, 39–95 (2013).
86
A. Staal, S. C. Dekker, C. Xu, E. Van Nes, Bistability, spatial interactions and the distribution of tropical forests and savannas. Ecosystems 19, 1080–1091 (2016).
87
J. C. Aleman, A. C. Staver, Spatial patterns in the global distributions of savanna and forest. Glob. Ecol. Biogeogr. 27, 792–803 (2018).
88
D. R. Uden, D. Twidwell, C. R. Allen, M. O. Jones, D. E. Naugle, J. D. Maestas, B. W. Allred, Spatial imaging and screening for regime shifts. Front. Ecol. Evol. 7, 407 (2019).
89
A. C. Staver, G. P. Asner, I. Rodriguez-Iturbe, S. A. Levin, I. P. J. Smit, Spatial patterning among savanna trees in high-resolution, spatially extensive data. Proc. Natl. Acad. Sci. U.S.A. 116, 10681–10685 (2019).
90
W. Zhang, M. Brandt, Q. Wang, A. V. Prishchepov, C. J. Tucker, Y. Li, H. Lyu, R. Fensholt, From woody cover to woody canopies: How Sentinel-1 and Sentinel-2 data advance the mapping of woody plants in savannas. Remote Sens. Environ. 234, 111465 (2019).
91
G. Xanthopoulos, G. Maheras, V. Gouma, M. Gouvas, Is the Keetch–Byram drought index (KBDI) directly related to plant water stress? For. Ecol. Manage. 234, S27 (2006).
92
L. Wang, J. J. Qu, Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China 3, 237–247 (2009).
93
T. Long, Z. Zhang, G. He, W. Jiao, C. Tang, B. Wu, X. Zhang, G. Wang, R. Yin, 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sens. 11, 489 (2019).
94
R. B. Hoyle, Pattern Formation: An Introduction to Methods (Cambridge Univ. Press, 2006).
95
A. Doelman, in Complexity Science, M. Peletier, R. van Santen, E. Steur, Eds. (World Scientific, 2019), pp. 129–192.
96
R. Bastiaansen, A. Doelman, The dynamics of disappearing pulses in a singularly perturbed reaction-diffusion systems with parameters that vary in time and space. Physica D 388, 45–72 (2019).
97
R. Bastiaansen, P. Carter, A. Doelman, Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems. Nonlinearity 32, 2759–2814 (2019).
98
O. Jaïbi, A. Doelman, M. Chirilus-Bruckner, E. Meron, The existence of localized vegetation patterns in a systematically reduced model for dryland vegetation. Physica D 412, 132637 (2020).
99
M. Scheffer, S. R. Carpenter, T. M. Lenton, J. Bascompte, W. Brock, V. Dakos, J. van de Koppel, I. A. van de Leemput, S. A. Levin, E. H. van Nes, M. Pascual, J. Vandermeer, Anticipating critical transitions. Science 338, 344–348 (2012).
100
J. N. Kutz, S. L. Brunton, B. W. Brunton, J. L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems (Society for Industrial and Applied Mathematics, 2016).
101
P. Van Heijster, B. Sandstede, Bifurcations to travelling planar spots in a three-component FitzHugh–Nagumo system. Physica D 275, 19–34 (2014).
102
B. Wuyts, A. R. Champneys, J. I. House, Correction: Author Correction: Amazonian forest-savanna bistability and human impact. Nat. Commun. 9, 16179 (2018).
103
A. Doelman, P. van Heijster, J. Shen, Pulse dynamics in reaction–diffusion equations with strong spatially localized impurities. Phil. Trans. R. Soc. A 376, 20170183 (2018).
104
L. Eigentler, J. A. Sherratt, Spatial self-organisation enables species coexistence in a model for savanna ecosystems. J. Theor. Biol. 487, 110122 (2020).
105
M. I. Budyko, The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969).
106
W. D. Sellers, A global climatic model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol. 8, 392–400 (1969).
107
H. Stommel, Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230 (1961).
108
H. Gildor, E. Tziperman, Physical mechanisms behind biogeochemical glacial-interglacial CO2 variations. Geophys. Res. Lett. 28, 2421–2424 (2001).
109
H. M. Alkhayoun, P. Ashwin, L. C. Jackson, C. Quinn, R. A. Wood, Basin bifurcation, oscillatory instability and scale-induced thresholds for Atlantic meridonal overturning circulation in a global box model. Proc. R. Soc. A 475, 20190051 (2019).
110
P. Valdes, Built for stability. Nat. Geosci. 4, 414–416 (2011).

Information & Authors

Information

Published In

Science
Volume 374 | Issue 6564
8 October 2021

Submission history

Published in print: 8 October 2021

Permissions

Request permissions for this article.

Acknowledgments

M. te Beest and A. Staal critically reviewed earlier versions of this manuscript. M. Eppinga, J. Rademacher, E. Siero, K. Siteur, and S. van der Stelt contributed to research that led to new insights leading to this paper. We thank T. Markus for designing figures. Funding: The research leading to this paper was funded by the Netherlands Organization of Scientific Research, NWO Complexity and NWO Mathematics of Planet Earth programs. This project is TiPES contribution no. 83. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 820970. Author contributions: All authors contributed to the conceptualization and research ideas. M.R., A.D., and R.B. wrote the original draft, and all authors contributed to reviewing and editing the paper. M.R., R.B., S.B., J.v.d.K., and M.B. prepared visual materials. Competing interests: The authors declare no competing interests.

Authors

Affiliations

Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC, Utrecht, Netherlands.
Department of Physics, Institute for Marine and Atmospheric Research Utrecht, Utrecht University, 3508 TA, Utrecht, Netherlands.
Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC, Utrecht, Netherlands.
The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.
Indian Statistical Institute, Agricultural and Ecological Research Unit, Kolkata 700108, India.
Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research, 4400 AC, Yerseke, Netherlands.
Groningen Institute for Evolutionary Life Sciences, Conservation Ecology Group, University of Groningen, 9700 CC, Groningen, Netherlands.
Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC, Utrecht, Netherlands.
National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), 10133 Torino, Italy.
Mathematical Institute, Leiden University, 2300 RA, Leiden, Netherlands.

Funding Information

Notes

*Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

View Options

Get Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media