Advertisement

How to feed an enzyme ethane

When released from ocean floor seeps, small hydrocarbons are rapidly consumed by micro-organisms. Methane is highly abundant and is both produced and consumed by microbes through well understood biochemical pathways. Less well understood is how ethane, also a major natural component of gaseous hydrocarbons, is metabolized. To understand how microbes take advantage of this energy and carbon source, Hahn et al. solved the x-ray crystal structures of an enzyme they call ethyl coenzyme-M reductase, which converts ethane into the thioether ethyl-coenzyme M as the entry point for catabolism. They found an expanded active site and, using a xenon gas derivatization experiment, a distinctive tunnel through the protein that is proposed to permit access of the gaseous substrate.
Science, abg1765, this issue p. 118

Abstract

Ethane, the second most abundant hydrocarbon gas in the seafloor, is efficiently oxidized by anaerobic archaea in syntrophy with sulfate-reducing bacteria. Here, we report the 0.99-angstrom-resolution structure of the proposed ethane-activating enzyme and describe the specific traits that distinguish it from methane-generating and -consuming methyl-coenzyme M reductases. The widened catalytic chamber, harboring a dimethylated nickel-containing F430 cofactor, would adapt the chemistry of methyl-coenzyme M reductases for a two-carbon substrate. A sulfur from methionine replaces the oxygen from a canonical glutamine as the nickel lower-axial ligand, a feature conserved in thermophilic ethanotrophs. Specific loop extensions, a four-helix bundle dilatation, and posttranslational methylations result in the formation of a 33-angstrom-long hydrophobic tunnel, which guides the ethane to the buried active site as confirmed with xenon pressurization experiments.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S16
Tables S1 to S3
References (3658)

Resources

File (abg1765-hahn-sm.pdf)
File (abg1765_hahn_reproducibility-checklist.pdf)

References and Notes

1
J. F. Clark, L. Washburn, J. S. Hornafius, B. P. Luyendyk, Dissolved hydrocarbon flux from natural marine seeps to the southern California Bight. J. Geophys. Res. 105 (C5), 11509–11522 (2000).
2
G. Etiope, P. Ciccioli, Earth’s degassing: A missing ethane and propane source. Science 323, 478–478 (2009).
3
S. B. Joye, A. Boetius, B. N. Orcutt, J. P. Montoya, H. N. Schulz, M. J. Erickson, S. K. Lugo, The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem. Geol. 205, 219–238 (2004).
4
V. Mastalerz, G. J. de Lange, A. Dahlmann, Differential aerobic and anaerobic oxidation of hydrocarbon gases discharged at mud volcanoes in the Nile deep-sea fan. Geochim. Cosmochim. Acta 73, 3849–3863 (2009).
5
R. Laso-Pérez, C. Hahn, D. M. van Vliet, H. E. Tegetmeyer, F. Schubotz, N. T. Smit, T. Pape, H. Sahling, G. Bohrmann, A. Boetius, K. Knittel, G. Wegener, Anaerobic degradation of non-methane alkanes by “Candidatus Methanoliparia” in hydrocarbon seeps of the Gulf of Mexico. mBio 10, e01814–e01819 (2019).
6
A. Boetius, K. Ravenschlag, C. J. Schubert, D. Rickert, F. Widdel, A. Gieseke, R. Amann, B. B. Jørgensen, U. Witte, O. Pfannkuche, A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).
7
S. C. Chen, N. Musat, O. J. Lechtenfeld, H. Paschke, M. Schmidt, N. Said, D. Popp, F. Calabrese, H. Stryhanyuk, U. Jaekel, Y.-G. Zhu, S. B. Joye, H.-H. Richnow, F. Widdel, F. Musat, Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 568, 108–111 (2019).
8
C. J. Hahn, R. Laso-Pérez, F. Vulcano, K.-M. Vaziourakis, R. Stokke, I. H. Steen, A. Teske, A. Boetius, M. Liebeke, R. Amann, K. Knittel, G. Wegener, “Candidatus Ethanoperedens,” a thermophilic genus of Archaea mediating the anaerobic oxidation of ethane. mBio 11, e00600–e00620 (2020).
9
V. J. Orphan, C. H. House, K. U. Hinrichs, K. D. McKeegan, E. F. DeLong, Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487 (2001).
10
T. Holler, F. Widdel, K. Knittel, R. Amann, M. Y. Kellermann, K.-U. Hinrichs, A. Teske, A. Boetius, G. Wegener, Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J. 5, 1946–1956 (2011).
11
R. Laso-Pérez, G. Wegener, K. Knittel, F. Widdel, K. J. Harding, V. Krukenberg, D. V. Meier, M. Richter, H. E. Tegetmeyer, D. Riedel, H.-H. Richnow, L. Adrian, T. Reemtsma, O. J. Lechtenfeld, F. Musat, Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401 (2016).
12
M. Sibuet, K. Olu, Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res. Part II Top. Stud. Oceanogr. 45, 517–567 (1998).
13
G. Borrel, P. S. Adam, L. J. McKay, L.-X. Chen, I. N. Sierra-García, C. M. K. Sieber, Q. Letourneur, A. Ghozlane, G. L. Andersen, W.-J. Li, S. J. Hallam, G. Muyzer, V. M. de Oliveira, W. P. Inskeep, J. F. Banfield, S. Gribaldo, Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4, 603–613 (2019).
14
S. E. McGlynn, G. L. Chadwick, C. P. Kempes, V. J. Orphan, Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).
15
G. Wegener, V. Krukenberg, D. Riedel, H. E. Tegetmeyer, A. Boetius, Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).
16
R. K. Thauer, Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes. Biochemistry 58, 5198–5220 (2019).
17
D. V. Miller, S. J. Booker, The expanding role of methyl-coenzyme M reductase in the anaerobic functionalization of alkanes. Biochemistry 58, 4269–4271 (2019).
18
Y. Wang, G. Wegener, S. E. Ruff, F. Wang, Methyl/alkyl-coenzyme M reductase-based anaerobic alkane oxidation in archaea. Environ. Microbiol. 23, 530–541 (2021).
19
U. Ermler, W. Grabarse, S. Shima, M. Goubeaud, R. K. Thauer, Crystal structure of methyl-coenzyme M reductase: The key enzyme of biological methane formation. Science 278, 1457–1462 (1997).
20
T. Wongnate, D. Sliwa, B. Ginovska, D. Smith, M. W. Wolf, N. Lehnert, S. Raugei, S. W. Ragsdale, The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science 352, 953–958 (2016).
21
S. J. Hallam, N. Putnam, C. M. Preston, J. C. Detter, D. Rokhsar, P. M. Richardson, E. F. DeLong, Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).
22
A. Meyerdierks, M. Kube, I. Kostadinov, H. Teeling, F. O. Glöckner, R. Reinhardt, R. Amann, Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ. Microbiol. 12, 422–439 (2010).
23
S. Shima, M. Krueger, T. Weinert, U. Demmer, J. Kahnt, R. K. Thauer, U. Ermler, Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically. Nature 481, 98–101 (2011).
24
M. Krüger, A. Meyerdierks, F. O. Glöckner, R. Amann, F. Widdel, M. Kube, R. Reinhardt, J. Kahnt, R. Böcher, R. K. Thauer, S. Shima, A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426, 878–881 (2003).
25
M. Kaneko, Y. Takano, Y. Chikaraishi, N. O. Ogawa, S. Asakawa, T. Watanabe, S. Shima, M. Krüger, M. Matsushita, H. Kimura, N. Ohkouchi, Quantitative analysis of coenzyme F430 in environmental samples: A new diagnostic tool for methanogenesis and anaerobic methane oxidation. Anal. Chem. 86, 3633–3638 (2014).
26
S. Scheller, M. Goenrich, R. K. Thauer, B. Jaun, Methyl-coenzyme M reductase from methanogenic archaea: Isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M. J. Am. Chem. Soc. 135, 14985–14995 (2013).
27
R. P. Gunsalus, J. A. Romesser, R. S. Wolfe, Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry 17, 2374–2377 (1978).
28
F. P. Wang, Y. Zhang, Y. Chen, Y. He, J. Qi, K.-U. Hinrichs, X.-X. Zhang, X. Xiao, N. Boon, Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J. 8, 1069–1078 (2014).
29
V. Krukenberg, D. Riedel, H. R. Gruber-Vodicka, P. L. Buttigieg, H. E. Tegetmeyer, A. Boetius, G. Wegener, Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ. Microbiol. 20, 1651–1666 (2018).
30
R. K. Thauer, Anaerobic oxidation of methane with sulfate: On the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr. Opin. Microbiol. 14, 292–299 (2011).
31
K. Zheng, P. D. Ngo, V. L. Owens, X. P. Yang, S. O. Mansoorabadi, The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 354, 339–342 (2016).
32
S. J. Moore, S. T. Sowa, C. Schuchardt, E. Deery, A. D. Lawrence, J. V. Ramos, S. Billig, C. Birkemeyer, P. T. Chivers, M. J. Howard, S. E. J. Rigby, G. Layer, M. J. Warren, Elucidation of the biosynthesis of the methane catalyst coenzyme F430. Nature 543, 78–82 (2017).
33
T. Wagner, J. Kahnt, U. Ermler, S. Shima, Didehydroaspartate modification in methyl-coenzyme M reductase catalyzing methane formation. Angew. Chem. Int. Ed. 55, 10630–10633 (2016).
34
E. Chovancova, A. Pavelka, P. Benes, O. Strnad, J. Brezovsky, B. Kozlikova, A. Gora, V. Sustr, M. Klvana, P. Medek, L. Biedermannova, J. Sochor, J. Damborsky, CAVER 3.0: A tool for the analysis of transport pathways in dynamic protein structures. PLOS Comput. Biol. 8, e1002708 (2012).
35
Hahn et al., X-ray crystallography and mass spectrometry raw and processed data accompanying the manuscript “Crystal structure of a key enzyme for anaerobic ethane activation”. Zenodo (2021).
36
F. B. Widdel, F. Bak, Gram-negative mesophilic sulfate-reducing bacteria. Prokaryotes 1, 3352–3378 (1992).
37
R. Cord-Ruwisch, A Quick Method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Methods 4, 33–36 (1985).
38
R. Laso-Pérez, V. Krukenberg, F. Musat, G. Wegener, Establishing anaerobic hydrocarbon-degrading enrichment cultures of microorganisms under strictly anoxic conditions. Nat. Protoc. 13, 1310–1330 (2018).
39
G. Wegener, V. Krukenberg, S. E. Ruff, M. Y. Kellermann, K. Knittel, Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front. Microbiol. 7, 46 (2016).
40
M. Karrasch, M. Bott, R. K. Thauer, Carbonic-anhydrase activity in acetate grown Methanosarcina Barkeri. Arch. Microbiol. 151, 137–142 (1989).
41
P. Schönheit, J. Moll, R. K. Thauer, Growth-parameters (Ks, Mu-Max, Ys) of Methanobacterium thermoautotrophicum. Arch. Microbiol. 127, 59–65 (1980).
42
O. N. Lemaire, P. Infossi, A. Ali Chaouche, L. Espinosa, S. Leimkühler, M.-T. Giudici-Orticoni, V. Méjean, C. Iobbi-Nivol, Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria. Sci. Rep. 8, 13576 (2018).
43
C. Vonrhein, C. Flensburg, P. Keller, A. Sharff, O. Smart, W. Paciorek, T. Womack, G. Bricogne, Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293–302 (2011).
44
I. J. Tickle, C. Flensburg, P. Keller, W. Paciorek, A. Sharff, C. Vonrhein, G. Bricogne, STARANISO (Global Phasing, 2018).
45
D. Liebschner, P. V. Afonine, M. L. Baker, G. Bunkóczi, V. B. Chen, T. I. Croll, B. Hintze, L.-W. Hung, S. Jain, A. J. McCoy, N. W. Moriarty, R. D. Oeffner, B. K. Poon, M. G. Prisant, R. J. Read, J. S. Richardson, D. C. Richardson, M. D. Sammito, O. V. Sobolev, D. H. Stockwell, T. C. Terwilliger, A. G. Urzhumtsev, L. L. Videau, C. J. Williams, P. D. Adams, Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).
46
P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
47
G. Bricogne, E. Blanc, M. Brandl, C. Flensburg, P. Keller, W. Paciorek, P. Roversi, A. Sharff, O. S. Smart, C. Vonrhein, T. O. Womack, BUSTER version 2.10.3. (Global Phasing, 2017).
48
A. Thorn, G. M. Sheldrick, ANODE: Anomalous and heavy-atom density calculation. J. Appl. Crystallogr. 44, 1285–1287 (2011).
49
V. B. Chen, W. B. Arendall 3rd, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, D. C. Richardson, MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
50
B. K. Ho, F. Gruswitz, HOLLOW: Generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008).
51
N. R. Voss, M. Gerstein, 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res. 38, W555–W562 (2010).
52
W. Grabarse, F. Mahlert, S. Shima, R. K. Thauer, U. Ermler, Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: Unusual amino acid modification, conservation and adaptation. J. Mol. Biol. 303, 329–344 (2000).
53
T. Wagner, C. E. Wegner, J. Kahnt, U. Ermler, S. Shima, Phylogenetic and structural comparisons of the three types of methyl coenzyme M reductase from Methanococcales and Methanobacteriales. J. Bacteriol. 199, e00197-17 (2017).
54
S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman, Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
55
F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, J. D. Thompson, D. G. Higgins, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
56
X. Robert, P. Gouet, Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).
57
A. Stamatakis, RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
58
I. Letunic, P. Bork, Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 373 | Issue 6550
2 July 2021

Submission history

Received: 15 December 2020
Accepted: 28 May 2021
Published in print: 2 July 2021

Permissions

Request permissions for this article.

Acknowledgments

We thank the Max Planck Institute for Marine Microbiology and the Max-Planck-Society for continuous support. We thank the SOLEIL and SLS synchrotrons for beam time allocation and the respective beamline staffs of Proxima-1 and X06DA for assistance with data collection, with specific regards to P. Legrand. We also acknowledge C. Probian and R. Appel for their continuous support in the Microbial Metabolism laboratory. We are thankful to R. Amann and R. K. Thauer for their critical views on the manuscript and their stimulating discussions. We thank K. Knittel for her inputs during a regular exchange. We thank A. Teske for organizing the sampling campaign of the Guaymas Basin hydrothermal vents (NSF grant 1357238). Funding: Additional funds came from the Deutsche Forschungsgemeinschaft funding the Cluster of Excellence “The Ocean Floor—Earth’s Uncharted Interface” (EXC-2077–390741603) at MARUM, University Bremen. S.E. was granted by SNF grant 200021_182369. Author contributions: C.J.H., O.N.L., G.W., and T.W. designed the research. C.J.H., O.N.L., and G.W. performed cultivation and culture experiments. C.J.H., O.N.L., and T.W. purified and crystallized the proteins. S.E., O.N.L., and T.W. collected x-ray data and built the models. O.N.L. and T.W. analyzed the structures. S.E. and T.W. performed and analyzed the xenon-pressurization experiments. J.K., O.N.L., and T.W. analyzed the F430 cofactor and posttranslational modifications. C.J.H., O.N.L., G.W., and T.W. interpreted the data and wrote the paper, with contributions and final approval of all co-authors. Competing interests: The authors declare no competing interests. Data and materials availability: All structures were validated and deposited in the Protein Data Bank (PDB) under the following accession numbers: 7B1S, native ethyl-coenzyme M reductase from Ca. E. thermophilum; 7B2C, Xenon-pressurized ethyl-coenzyme M reductase from Ca. E. thermophilum and 7B2H, Xenon-pressurized methyl-coenzyme M reductase from M. marburgensis. Raw and processed data for x-ray crystallography and mass spectrometry experiments are hosted at Zenodo (35). All other data are available in the manuscript or the supplementary materials.

Authors

Affiliations

Max Planck Institute for Marine Microbiology, Bremen 28359, Germany.
Max Planck Institute for Marine Microbiology, Bremen 28359, Germany.
Jörg Kahnt
Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
Paul Scherrer Institute (PSI), Villigen PSI, Villigen, Switzerland.
Present address: European Synchrotron Radiation Facility (ESRF), Grenoble, France.
Max Planck Institute for Marine Microbiology, Bremen 28359, Germany.
Center for Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany.
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany.
Max Planck Institute for Marine Microbiology, Bremen 28359, Germany.

Funding Information

Deutsche Forschungsgemeinschaft: EXC-2077 – 390741603
Max Planck Gesellschaft

Notes

*
Corresponding author. Email: [email protected] (G.W.); [email protected] (T.W.)
These authors contributed equally to the work.

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep, Applied and Environmental Microbiology, 88, 11, (2022).https://doi.org/10.1128/aem.02109-21
    Crossref
  2. Diversity and Evolution of Methane-Related Pathways in Archaea, Annual Review of Microbiology, 76, 1, (727-755), (2022).https://doi.org/10.1146/annurev-micro-041020-024935
    Crossref
  3. Anaerobic Degradation of Alkanes by Marine Archaea, Annual Review of Microbiology, 76, 1, (553-577), (2022).https://doi.org/10.1146/annurev-micro-111021-045911
    Crossref
  4. A Structural View of Alkyl-Coenzyme M Reductases, the First Step of Alkane Anaerobic Oxidation Catalyzed by Archaea, Biochemistry, 61, 10, (805-821), (2022).https://doi.org/10.1021/acs.biochem.2c00135
    Crossref
  5. Progress and Challenges in Studying the Ecophysiology of Archaea, Archaea, (469-486), (2022).https://doi.org/10.1007/978-1-0716-2445-6_32
    Crossref
  6. Microbial Metabolism of Nickel, Microbial Metabolism of Metals and Metalloids, (417-502), (2022).https://doi.org/10.1007/978-3-030-97185-4_14
    Crossref
  7. Comparative study of the effects of high hydrostatic pressure per se and high argon pressure on urate oxidase ligand stabilization , Acta Crystallographica Section D Structural Biology, 78, 2, (162-173), (2022).https://doi.org/10.1107/S2059798321012134
    Crossref
  8. XFEL serial crystallography reveals the room temperature structure of methyl-coenzyme M reductase, Journal of Inorganic Biochemistry, 230, (111768), (2022).https://doi.org/10.1016/j.jinorgbio.2022.111768
    Crossref
  9. The Polar Fox Lagoon in Siberia harbours a community of Bathyarchaeota possessing the potential for peptide fermentation and acetogenesis, Antonie van Leeuwenhoek, 115, 10, (1229-1244), (2022).https://doi.org/10.1007/s10482-022-01767-z
    Crossref
  10. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments, Nature Communications, 13, 1, (2022).https://doi.org/10.1038/s41467-022-32503-w
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media