Advertisement

A dissipative quantum gas of light

Our textbook understanding of quantum systems tends to come from modeling these systems isolated from the environment. However, an emerging focus is understanding how many-body quantum systems behave when interacting with their surroundings and how they subsequently become dissipative, or non-Hermitian, systems. Öztürk et al. formed a quantum condensate of light by trapping photons in an optical cavity, a system that is naturally dissipative. By altering the trapping conditions, they demonstrated that the system provides a powerful platform with which to explore the complex dynamics and phase transitions occurring in dissipative quantum systems.
Science, this issue p. 88

Abstract

Quantum gases of light, such as photon or polariton condensates in optical microcavities, are collective quantum systems enabling a tailoring of dissipation from, for example, cavity loss. This characteristic makes them a tool to study dissipative phases, an emerging subject in quantum many-body physics. We experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a dissipative phase characterized by a biexponential decay of the condensate’s second-order coherence. The phase transition occurs because of the emergence of an exceptional point in the quantum gas. Although Bose-Einstein condensation is usually connected to lasing by a smooth crossover, the observed phase transition separates the biexponential phase from both lasing and an intermediate, oscillatory condensate regime. Our approach can be used to study a wide class of dissipative quantum phases in topological or lattice systems.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Table S1
References (3041)

Resources

File (abe9869_ozturk_sm.pdf)

References and Notes

1
M. A. Miri, A. Alù, Exceptional points in optics and photonics. Science 363, eaar7709 (2019).
2
T. Fink, A. Schade, S. Höfling, C. Schneider, A. Imamoglu, Signatures of a dissipative phase transition in photon correlation measurements. Nat. Phys. 14, 365–369 (2017).
3
G. Makey, S. Galioglu, R. Ghaffari, E. D. Engin, G. Yıldırım, Ö. Yavuz, O. Bektaş, Ü. S. Nizam, Ö. Akbulut, Ö. Şahin, K. Güngör, D. Dede, H. V. Demir, F. Ö. Ilday, S. Ilday, Universality of dissipative self-assembly from quantum dots to human cells. Nat. Phys. 16, 795–801 (2020).
4
N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner, T. Esslinger, Dissipation-induced structural instability and chiral dynamics in a quantum gas. Science 366, 1496–1499 (2019).
5
I. Prigogine, Time, structure, and fluctuations. Science 201, 777–785 (1978).
6
F. E. Öztürk, T. Lappe, G. Hellmann, J. Schmitt, J. Klaers, F. Vewinger, J. Kroha, M. Weitz, Fluctuation dynamics of an open photon Bose-Einstein condensate. Phys. Rev. A 100, 043803 (2019).
7
S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, P. Zoller, Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008).
8
R. Hanai, A. Edelman, Y. Ohashi, P. B. Littlewood, Non-Hermitian phase transition from a polariton Bose-Einstein condensate to a photon laser. Phys. Rev. Lett. 122, 185301 (2019).
9
K. Kawabata, K. Shiozaki, M. Ueda, M. Sato, Symmetry and topology in non-Hermitian Physics. Phys. Rev. X 9, 041015 (2019).
10
E. Altman, L. M. Sieberer, L. Chen, S. Diehl, J. Toner, Two-dimensional superfluidity of exciton-polaritons requires strong anisotropy. Phys. Rev. X 5, 011017 (2015).
11
J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Bose-Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).
12
Y. Sun, P. Wen, Y. Yoon, G. Liu, M. Steger, L. N. Pfeiffer, K. West, D. W. Snoke, K. A. Nelson, Bose-Einstein condensation of long-lifetime polaritons in thermal equilibrium. Phys. Rev. Lett. 118, 016602 (2017).
13
I. Carusotto, C. Ciuti, Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).
14
J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, M. Weitz, Observation of grand-canonical number statistics in a photon Bose-Einstein condensate. Phys. Rev. Lett. 112, 030401 (2014).
15
A. Griffin, D. W. Snoke, S. Stringari, Eds., Bose-Einstein Condensation (Cambridge Univ. Press, 1995).
16
B. T. Walker, J. D. Rodrigues, H. S. Dhar, R. F. Oulton, F. Mintert, R. A. Nyman, Non-stationary statistics and formation jitter in transient photon condensation. Nat. Commun. 11, 1390 (2020).
17
T. Kato, Perturbation Theory of Linear Operators (Springer, 1966).
18
C. M. Bender, S. Boettcher, Real spectra in non-Hermitian operators having PT-symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).
19
T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, E. A. Ostrovskaya, Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015).
20
F. Minganti, A. Miranowicz, R. W. Chhajlany, F. Nori, Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps. Phys. Rev. A 100, 062131 (2019).
21
W. D. Heiss, The physics of exceptional points. J. Phys. A 45, 444016 (2012).
22
R. Hanai, P. B. Littlewood, Critical fluctuations at a many-body exceptional point. Phys. Rev. Res. 2, 033018 (2020).
23
J. Marelic, R. A. Nyman, Experimental evidence for inhomogeneous pumping and energy-dependent effects in photon Bose-Einstein condensation. Phys. Rev. A 91, 033813 (2015).
24
S. Greveling, K. L. Perrier, D. van Oosten, Density distribution of a Bose-Einstein condensate of photons in a dye-filled microcavity. Phys. Rev. A 98, 013810 (2018).
25
See supplementary materials.
26
E. M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D. Lukin, J. I. Cirac, Dissipative phase transition in a central spin system. Phys. Rev. A 86, 012116 (2012).
27
P. Kirton, J. Keeling, Nonequilibrium model of photon condensation. Phys. Rev. Lett. 111, 100404 (2013).
28
J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, M. Weitz, Thermalization kinetics of light: From laser dynamics to equilibrium condensation of photons. Phys. Rev. A 92, 011602 (2015).
29
F. E. Öztürk, T. Lappe, G. Hellmann, J. Schmitt, J. Klaers, F. Vewinger, J. Kroha, M. Weitz, Observation of a non-Hermitian phase transition in an optical quantum gas, Version 1, Zenodo (2020); http://doi.org/10.5281/zenodo.4522437.
30
E. De Angelis, F. De Martini, P. Mataloni, Microcavity quantum superradiance. J. Opt. B 2, 149–153 (2000).
31
H. Yokoyama, S. D. Brorson, Rate equation analysis of microcavity lasers. J. Appl. Phys. 66, 4801–4805 (1989).
32
V. Bagnato, D. Kleppner, Bose-Einstein condensation in low-dimensional traps. Phys. Rev. A 44, 7439–7441 (1991).
33
J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, 1999).
34
R. M. Ziff, G. E. Uhlenbeck, M. Kac, The ideal Bose-Einstein gas, revisited. Phys. Rep. 32, 169–248 (1977).
35
J. Klaers, J. Schmitt, T. Damm, F. Vewinger, M. Weitz, Statistical physics of Bose-Einstein-condensed light in a dye microcavity. Phys. Rev. Lett. 108, 160403 (2012).
36
D. N. Sob’yanin, Hierarchical maximum entropy principle for generalized superstatistical systems and Bose-Einstein condensation of light. Phys. Rev. E 85, 061120 (2012).
37
J. Schmitt, T. Damm, D. Dung, C. Wahl, F. Vewinger, J. Klaers, M. Weitz, Spontaneous symmetry breaking and phase coherence of a photon Bose-Einstein condensate coupled to a reservoir. Phys. Rev. Lett. 116, 033604 (2016).
38
W. Verstraelen, M. Wouters, The temporal coherence of a photon condensate: A quantum trajectory description. Phys. Rev. A 100, 013804 (2019).
39
M. Marthaler, Y. Utsumi, D. S. Golubev, A. Shnirman, G. Schön, Lasing without inversion in circuit quantum electrodynamics. Phys. Rev. Lett. 107, 093901 (2011).
40
M. Radonjić, W. Kopylov, A. Balaz, A. Pelster, Interplay of coherent and dissipative dynamics in condensates of light. New J. Phys. 20, 055014 (2018).
41
P. Kirton, J. Keeling, Thermalization and breakdown of thermalization in photon condensates. Phys. Rev. A 91, 033826 (2015).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 372 | Issue 6537
2 April 2021

Submission history

Received: 26 September 2020
Accepted: 23 February 2021
Published in print: 2 April 2021

Permissions

Request permissions for this article.

Acknowledgments

We thank S. Diehl, M. Scully, and H. Stoof for discussions. Funding: We acknowledge support by the DFG, under SFB/TR 185 (277625399) and the Cluster of Excellence ML4Q (EXC 2004/1–390534769); the EU, under the Quantum Flagship project PhoQuS; and the DLR, with funds provided by the BMWi (50WM1859). J.S. thanks the University of Cambridge for support during the early stages of this work, and M.W. thanks the CAIQuE for providing a guest stay at UC Berkeley. Author contributions: F.E.Ö., T.L., J.S., and F.V. analyzed the data. J.S., J.Kl., and M.W. conceived of and designed the experiments. F.E.Ö., T.L., and J.Kr. contributed materials and/or analysis tools. F.E.Ö. and G.H. performed the experiments. F.E.Ö., T.L., J.S., F.V., J.Kr., and M.W. wrote the paper. Competing interests: The authors declare that they have no competing interests. Data and materials availability: Data shown in the figures are available in the Zenodo database (29).

Authors

Affiliations

Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, 53115 Bonn, Germany.
Tim Lappe
Physikalisches Institut, Universität Bonn, Nussallee 12, 53115 Bonn, Germany.
Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, 53115 Bonn, Germany.
Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, 53115 Bonn, Germany.
Jan Klaers
Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, 53115 Bonn, Germany.
Present address: Complex Photonic Systems (COPS), MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands.
Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, 53115 Bonn, Germany.
Physikalisches Institut, Universität Bonn, Nussallee 12, 53115 Bonn, Germany.
Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, 53115 Bonn, Germany.

Funding Information

Cluster of Excellence ML4Q: EXC 2004/1
Cluster of Excellence ML4Q: 390534769

Notes

*
Corresponding author. Email: [email protected] (J.S.); [email protected] (M.W.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Phasen eines Bose‐Einstein‐Kondensats aus Licht, Physik in unserer Zeit, 52, 4, (162-163), (2021).https://doi.org/10.1002/piuz.202170404
    Crossref
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media