Advertisement

Looking for magnetic clues

Thin films of the neodymium nickelate NdNiO2 doped with strontium have recently been found to be superconducting. This materials class bears structural and electronic similarities to the famed cuprate superconductors, but how far the analogy goes remains unclear. Lu et al. used resonant inelastic x-ray scattering to look for magnetism, which exists in the cuprates, in Nd1-xSrxNiO2 films (see the Perspective by Benckiser). The authors observed magnetic modes in the undoped compound that had a doping evolution consistent with the behavior of a doped Mott insulator.
Science, abd7726, this issue p. 213; see also abi6855, p. 157

Abstract

The discovery of superconductivity in infinite-layer nickelates brings us tantalizingly close to a material class that mirrors the cuprate superconductors. We measured the magnetic excitations in these nickelates using resonant inelastic x-ray scattering at the Ni L3-edge. Undoped NdNiO2 possesses a branch of dispersive excitations with a bandwidth of approximately 200 milli–electron volts, which is reminiscent of the spin wave of strongly coupled, antiferromagnetically aligned spins on a square lattice. The substantial damping of these modes indicates the importance of coupling to rare-earth itinerant electrons. Upon doping, the spectral weight and energy decrease slightly, whereas the modes become overdamped. Our results highlight the role of Mottness in infinite-layer nickelates.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S7
References (38, 39)

Resources

File (abd7726-lu-sm.pdf)

References and Notes

1
P. W. Anderson, The Theory of Superconductivity in the High-Tc Cuprates (Princeton Univ. Press, 1997).
2
P. Phillips, Mottness. Ann. Phys. 321, 1634–1650 (2006).
3
J. Berges, Scaling up quantum simulations. Nature 569, 339–340 (2019).
4
J. Zaanen, Planckian dissipation, minimal viscosity and the transport in cuprate strange metals. SciPost Phys 6, 061 (2019).
5
D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, H. Y. Hwang, Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).
6
S. Zeng, C. S. Tang, X. Yin, C. Li, M. Li, Z. Huang, J. Hu, W. Liu, G. J. Omar, H. Jani, Z. S. Lim, K. Han, D. Wan, P. Yang, S. J. Pennycook, A. T. S. Wee, A. Ariando, Phase diagram and superconducting dome of infinite-layer Nd1-xSrxNiO2. Phys. Rev. Lett. 125, 147003 (2020).
7
V. I. Anisimov, D. Bukhvalov, T. M. Rice, Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).
8
K. W. Lee, W. E. Pickett, Infinite-layer LaNiO2: Ni+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).
9
A. S. Botana, M. R. Norman, Similarities and differences between LaNiO2 and CaCuO2 and implications for superconductivity. Phys. Rev. X 10, 011024 (2020).
10
M. Hepting, D. Li, C. J. Jia, H. Lu, E. Paris, Y. Tseng, X. Feng, M. Osada, E. Been, Y. Hikita, Y. D. Chuang, Z. Hussain, K. J. Zhou, A. Nag, M. Garcia-Fernandez, M. Rossi, H. Y. Huang, D. J. Huang, Z. X. Shen, T. Schmitt, H. Y. Hwang, B. Moritz, J. Zaanen, T. P. Devereaux, W. S. Lee, Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020).
11
M. Jiang, M. Berciu, G. A. Sawatzky, Critical nature of the Ni spin state in doped NdNiO2. Phys. Rev. Lett. 124, 207004 (2020).
12
G.-M. Zhang, Y. Yang, F.-C. Zhang, Self-doped Mott insulator for parent compounds of nickelate superconductors. Phys. Rev. B 101, 020501 (2020).
13
L.-H. Hu, C. Wu, Two-band model for magnetism and superconductivity in nickelates. Phys. Rev. Res. 1, 032046 (2019).
14
Z. Liu, Z. Ren, W. Zhu, Z. Wang, J. Yang, Electronic and magnetic structure of infinite-layer NdNiO2: Trace of antiferromagnetic metal. npj Quantum Mater. 5, 31 (2020).
15
E. Been, W. S. Lee, H. Y. Hwang, Y. Cui, J. Zaanen, T. Devereaux, B. Moritz, C. Jia, Electronic structure trends across the rare-earth series in superconducting infinite layer nickelates. Phys. Rev. X 11, 011050 (2021).
16
V. M. Katukuri, N. A. Bogdanov, O. Weser, J. van den Brink, A. Alavi, Electronic correlations and magnetic interactions in infinite-layer NdNiO2. Phys. Rev. B 102, 241112 (2020).
17
R. Zhang, C. Lane, B. Singh, J. Nokelainen, B. Barbiellini, R. S. Markiewicz, A. Bansil, J. Sun, f-electron and magnetic ordering effects in nickelates LaNiO2 and NdNiO2: remarkable role of the cuprate-like 3dx2-y2 band. arXiv:2009.05816 [cond-mat.str-el] (2020).
18
K. Lee, B. H. Goodge, D. Li, M. Osada, B. Wang, Y. Cui, L. F. Kourkoutis, H. Y. Hwang, Aspects of the synthesis of thin film superconducting infinite-layer nickelates. APL Mater. 8, 041107 (2020).
19
B. H. Goodge, D. Li, K. Lee, M. Osada, B. Y. Wang, G. A. Sawatzky, H. Y. Hwang, L. F. Kourkoutis, Doping evolution of the Mott-Hubbard landscape in infinite-layer nickelates. Proc. Natl. Acad. Sci. U.S.A. 118, e2007683118 (2021).
20
L. Braicovich, L. J. P. Ament, V. Bisogni, F. Forte, C. Aruta, G. Balestrino, N. B. Brookes, G. M. De Luca, P. G. Medaglia, F. M. Granozio, M. Radovic, M. Salluzzo, J. van den Brink, G. Ghiringhelli, Dispersion of magnetic excitations in the cuprate La2CuO4 and CaCuO2 compounds measured using resonant x-ray scattering. Phys. Rev. Lett. 102, 167401 (2009).
21
M. Le Tacon, G. Ghiringhelli, J. Chaloupka, M. M. Sala, V. Hinkov, M. W. Haverkort, M. Minola, M. Bakr, K. J. Zhou, S. Blanco-Canosa, C. Monney, Y. T. Song, G. L. Sun, C. T. Lin, G. M. De Luca, M. Salluzzo, G. Khaliullin, T. Schmitt, L. Braicovich, B. Keimer, Intense paramagnon excitations in a large family of high-temperature superconductors. Nat. Phys. 7, 725–730 (2011).
22
Y. Y. Peng, E. W. Huang, R. Fumagalli, M. Minola, Y. Wang, X. Sun, Y. Ding, K. Kummer, X. J. Zhou, N. B. Brookes, B. Moritz, L. Braicovich, T. P. Devereaux, G. Ghiringhelli, Dispersion, damping, and intensity of spin excitations in the monolayer (Bi,Pb)2(Sr,La)2CuO6+δ cuprate superconductor family. Phys. Rev. B 98, 144507 (2018).
23
K. J. Zhou, Y. B. Huang, C. Monney, X. Dai, V. N. Strocov, N. L. Wang, Z. G. Chen, C. Zhang, P. Dai, L. Patthey, J. van den Brink, H. Ding, T. Schmitt, Persistent high-energy spin excitations in iron-pnictide superconductors. Nat. Commun. 4, 1470 (2013).
24
G. Fabbris, D. Meyers, L. Xu, V. M. Katukuri, L. Hozoi, X. Liu, Z.-Y. Chen, J. Okamoto, T. Schmitt, A. Uldry, B. Delley, G. D. Gu, D. Prabhakaran, A. T. Boothroyd, J. van den Brink, D. J. Huang, M. P. M. Dean, Doping dependence of collective spin and orbital excitations in the spin-1 quantum antiferromagnet La2-xSrxNiO4 observed by x-rays. Phys. Rev. Lett. 118, 156402 (2017).
25
Y. Lu, D. Betto, K. Fürsich, H. Suzuki, H.-H. Kim, G. Cristiani, G. Logvenov, N. B. Brookes, E. Benckiser, M. W. Haverkort, G. Khaliullin, M. Le Tacon, M. Minola, B. Keimer, Site-selective probe of magnetic excitations in rare-earth nickelates using resonant inelastic x-ray scattering. Phys. Rev. X 8, 031014 (2018).
26
J. Kim, D. Casa, M. H. Upton, T. Gog, Y.-J. Kim, J. F. Mitchell, M. van Veenendaal, M. Daghofer, J. van den Brink, G. Khaliullin, B. J. Kim, Magnetic excitation spectra of Sr2IrO4 probed by resonant inelastic x-ray scattering: Establishing links to cuprate superconductors. Phys. Rev. Lett. 108, 177003 (2012).
27
Materials and methods are available as supplementary materials.
28
Y. Y. Peng, G. Dellea, M. Minola, M. Conni, A. Amorese, D. Di Castro, G. M. De Luca, K. Kummer, M. Salluzzo, X. Sun, X. J. Zhou, G. Balestrino, M. Le Tacon, B. Keimer, L. Braicovich, N. B. Brookes, G. Ghiringhelli, Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors. Nat. Phys. 13, 1201–1206 (2017).
29
R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost, T. E. Mason, S.-W. Cheong, Z. Fisk, Spin waves and electronic interactions in La2CuO4. Phys. Rev. Lett. 86, 5377–5380 (2001).
30
Y. Wang, E. W. Huang, B. Moritz, T. P. Devereaux, Magnon splitting induced by charge transfer in the three-orbital Hubbard model. Phys. Rev. Lett. 120, 246401 (2018).
31
M. A. Hayward, M. J. Rosseinsky, Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride. Solid State Sci. 5, 839–850 (2003).
32
D. Li, B. Y. Wang, K. Lee, S. P. Harvey, M. Osada, B. H. Goodge, L. F. Kourkoutis, H. Y. Hwang, Superconducting dome in Nd1-xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).
33
C. J. Jia, E. A. Nowadnick, K. Wohlfeld, Y. F. Kung, C.-C. Chen, S. Johnston, T. Tohyama, B. Moritz, T. P. Devereaux, Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering. Nat. Commun. 5, 3314 (2014).
34
J. Bała, A. M. Oleś, J. Zaanen, Spin polarons in the t-t’-J model. Phys. Rev. B 52, 4597–4606 (1995).
35
P. A. Lee, N. Nagaosa, X.-G. Wen, Doping a Mott insulator: Physics of high temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
36
J. Q. Lin, P. Villar Arribi, G. Fabbris, A. S. Botana, D. Meyers, H. Miao, Y. Shen, D. G. Mazzone, J. Feng, S. G. Chiuzbăian, A. Nag, A. C. Walters, M. García-Fernández, K.-J. Zhou, J. Pelliciari, I. Jarrige, J. W. Freeland, J. Zhang, J. F. Mitchell, V. Bisogni, X. Liu, M. R. Norman, M. P. M. Dean, Strong Superexchange in a d^9-δ Nickelate Revealed by Resonant Inelastic X-Ray Scattering. Phys. Rev. Lett. 126, 087001 (2021).
37
H. Lu et al., Replication data for “Magnetic excitations in infinite-layer nickelates”. Harvard Dataverse, version 2 (2021); .
38
J. Q. Lin, H. Miao, D. G. Mazzone, G. D. Gu, A. Nag, A. C. Walters, M. García-Fernández, A. Barbour, J. Pelliciari, I. Jarrige, M. Oda, K. Kurosawa, N. Momono, K.-J. Zhou, V. Bisogni, X. Liu, M. P. M. Dean, Strongly correlated charge density wave in La2 − xSrx CuO4 evidenced by doping-dependent phonon anomaly. Phys. Rev. Lett. 124, 207005 (2020).
39
W. Nolting, Methode der Spektralmomente für das Hubbard-Modell eines schmalenS-Bandes. Z. Physik A 255, 25–39 (1972).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 373 | Issue 6551
9 July 2021

Submission history

Received: 10 July 2020
Accepted: 21 May 2021
Published in print: 9 July 2021

Permissions

Request permissions for this article.

Acknowledgments

Funding: This work is supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515. We acknowledge the Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems Initiative through grant GBMF9072 for synthesis equipment. We acknowledge Diamond Light Source for providing the beam time at the I21-RIXS beamline under proposal NT25165. Author contributions: W.S.L. and K.-J.Z. conceived the research and designed the experiment. H.L., M.R., A.N., M.G.-F., S.A., K.-J.Z., and W.S.L. conducted the experiment at Diamond Light Source. H.L., M.R., A.N., K.-J.Z., and W.S.L. analyzed the data. M.O., D.F.L., K.L., B.Y.W., and H.Y.H. synthesized and characterized samples for the experiment. W.S.L., K.-J.Z., H.L., M.R., A.N., D.F.L., H.Y.H., E.M.B., B.M., Z.X.S., T.P.D., and J.Z. discussed and interpreted the results. H.L. and W.S.L. wrote the manuscript, with input from all authors. Competing interests: The authors declare no competing interests. Data and materials availability: All data presented in this work are available online at Harvard Dataverse (37).

Authors

Affiliations

Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK.
Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
Present address: Department of Physics, City University of Hong Kong, Kowloon, Hong Kong, China.
Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA.
Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA.
Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK.
Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA.
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
J. Zaanen
Instituut-Lorentz for theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.
Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA.
Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA.

Funding Information

U.S. Department of Energy: DE-AC02-76SF00515

Notes

*
Corresponding author. Email: [email protected] (K.-J.Z.); [email protected] (W.S.L.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Superconductivity in infinite-layer nickelate La1−xCaxNiO2 thin films, Science Advances, 8, 7, (2022)./doi/10.1126/sciadv.abl9927
    Abstract
  2. Experimental progress on the emergent infinite-layer Ni-based superconductors, Materials Today, 55, (170-185), (2022).https://doi.org/10.1016/j.mattod.2022.02.016
    Crossref
  3. Superconducting Instabilities in Strongly Correlated Infinite-Layer Nickelates, Physical Review Letters, 129, 7, (2022).https://doi.org/10.1103/PhysRevLett.129.077002
    Crossref
  4. Unconventional superconductivity after the BCS paradigm and empirical rules for the exploration of high temperature superconductors, Journal of Physics: Conference Series, 2323, 1, (012001), (2022).https://doi.org/10.1088/1742-6596/2323/1/012001
    Crossref
  5. Magnetism in doped infinite-layer studied by combined density functional theory and dynamical mean-field theory , Physical Review B, 106, 4, (2022).https://doi.org/10.1103/PhysRevB.106.045105
    Crossref
  6. Two-dimensional charge localization at the perovskite oxide interface, Applied Physics Reviews, 9, 3, (031405), (2022).https://doi.org/10.1063/5.0094500
    Crossref
  7. Superconductivity and antiferromagnetism in and : A cluster DMFT study , Physical Review B, 105, 20, (2022).https://doi.org/10.1103/PhysRevB.105.205131
    Crossref
  8. Synthesis and properties of La 1 – x Sr x NiO 3 and La 1–x Sr x NiO 2 , Chinese Physics B, 31, 10, (107401), (2022).https://doi.org/10.1088/1674-1056/ac7a1a
    Crossref
  9. Magnetic correlations in infinite-layer nickelates: An experimental and theoretical multimethod study, Physical Review Research, 4, 2, (2022).https://doi.org/10.1103/PhysRevResearch.4.023093
    Crossref
  10. Role of Oxygen States in the Low Valence Nickelate , Physical Review X, 12, 1, (2022).https://doi.org/10.1103/PhysRevX.12.011055
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media