Advertisement

Roaming dynamics in real time

Roaming is distinct from conventional reaction channels because of the unusual geometries that chemical systems use to bypass the minimum energy pathway. It is a relatively new phenomenon that is usually determined in experiments through spectroscopic characterization of the roaming products. Using a combination of time-resolved Coulomb explosion imaging and quasiclassical trajectory analysis, Endo et al. report real-time observation of individual fragments of the prototypical reaction of deuterated formaldehyde (D2CO) dissociation as they roam on ultrafast time scales. They show that roaming not only occurs several orders of magnitude earlier than previously expected but also that it can terminate in a radical (D + DCO) rather than the well-known molecular (D2 + CO) product channel.
Science, this issue p. 1072

Abstract

Since the discovery of roaming as an alternative molecular dissociation pathway in formaldehyde (H2CO), it has been indirectly observed in numerous molecules. The phenomenon describes a frustrated dissociation with fragments roaming at relatively large interatomic distances rather than following conventional transition-state dissociation; incipient radicals from the parent molecule self-react to form molecular products. Roaming has been identified spectroscopically through static product channel–resolved measurements, but not in real-time observations of the roaming fragment itself. Using time-resolved Coulomb explosion imaging (CEI), we directly imaged individual “roamers” on ultrafast time scales in the prototypical formaldehyde dissociation reaction. Using high-level first-principles simulations of all critical experimental steps, distinctive roaming signatures were identified. These were rendered observable by extracting rare stochastic events out of an overwhelming background using the highly sensitive CEI method.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S16
Tables S1 to S10
Equations S1 to S20
References (3162)
MCTDH Operator File and PES Cuts

Resources

File (abc2960-endo-sm.pdf)
File (abc2960_archive_file.gz)

References and Notes

1
J. M. Bowman, A. G. Suits, Roaming reactions: The third way. Phys. Today 64, 33–37 (2011).
2
J. M. Bowman, P. L. Houston, Theories and simulations of roaming. Chem. Soc. Rev. 46, 7615–7624 (2017).
3
D. Townsend, S. A. Lahankar, S. K. Lee, S. D. Chambreau, A. G. Suits, X. Zhang, J. Rheinecker, L. B. Harding, J. M. Bowman, The roaming atom: Straying from the reaction path in formaldehyde decomposition. Science 306, 1158–1161 (2004).
4
F. A. L. Mauguière, P. Collins, Z. C. Kramer, B. K. Carpenter, G. S. Ezra, S. C. Farantos, S. Wiggins, Roaming: A phase space perspective. Annu. Rev. Phys. Chem. 68, 499–524 (2017).
5
J. M. Bowman, Roaming. Mol. Phys. 112, 2516–2528 (2014).
6
A. G. Suits, Roaming reactions and dynamics in the van der Waals region. Annu. Rev. Phys. Chem. 71, 77–100 (2020).
7
R. Fernando, A. Dey, B. M. Broderick, B. Fu, Z. Homayoon, J. M. Bowman, A. G. Suits, Visible/infrared dissociation of NO3: Roaming in the dark or roaming on the ground? J. Phys. Chem. A 119, 7163–7168 (2015).
8
M. S. Quinn, K. Nauta, M. J. T. Jordan, J. M. Bowman, P. L. Houston, S. H. Kable, Rotational resonances in the H2CO roaming reaction are revealed by detailed correlations. Science 369, 1592–1596 (2020).
9
P. L. Houston, X. Wang, A. Ghosh, J. M. Bowman, M. S. Quinn, S. H. Kable, Formaldehyde roaming dynamics: Comparison of quasi-classical trajectory calculations and experiments. J. Chem. Phys. 147, 013936 (2017).
10
A. S. Mereshchenko, E. V. Butaeva, V. A. Borin, A. Eyzips, A. N. Tarnovsky, Roaming-mediated ultrafast isomerization of geminal tri-bromides in the gas and liquid phases. Nat. Chem. 7, 562–568 (2015).
11
N. Ekanayake, M. Nairat, B. Kaderiya, P. Feizollah, B. Jochim, T. Severt, B. Berry, K. R. Pandiri, K. D. Carnes, S. Pathak, D. Rolles, A. Rudenko, I. Ben-Itzhak, C. A. Mancuso, B. S. Fales, J. E. Jackson, B. G. Levine, M. Dantus, Mechanisms and time-resolved dynamics for trihydrogen cation (H3+) formation from organic molecules in strong laser fields. Sci. Rep. 7, 4703 (2017).
12
N. Ekanayake, T. Severt, M. Nairat, N. P. Weingartz, B. M. Farris, B. Kaderiya, P. Feizollah, B. Jochim, F. Ziaee, K. Borne, K. Raju P, K. D. Carnes, D. Rolles, A. Rudenko, B. G. Levine, J. E. Jackson, I. Ben-Itzhak, M. Dantus, H2 roaming chemistry and the formation of H3+ from organic molecules in strong laser fields. Nat. Commun. 9, 5186 (2018).
13
E. Livshits, I. Luzon, K. Gope, R. Baer, D. Strasser, Time-resolving the ultrafast H2 roaming chemistry and H3+ formation using extreme-ultraviolet pulses. Commun. Chem. 3, 49 (2020).
14
L. Poisson, D. Nandi, B. Soep, M. Hochlaf, M. Boggio-Pasqua, J.-M. Mestdagh, A roaming wavepacket in the dynamics of electronically excited 2-hydroxypyridine. Phys. Chem. Chem. Phys. 16, 581–587 (2014).
15
C.-M. Tseng, M. Fushitani, A. Matsuda, A. Hishikawa, Coincidence momentum imaging of four- and three-body Coulomb explosion of formaldehyde in ultrashort intense laser fields. J. Electron Spectrosc. Relat. Phenom. 228, 25–30 (2018).
16
M. J. Rosker, M. Dantus, A. H. Zewail, Femtosecond realtime probing of reactions. I. The technique. J. Chem. Phys. 89, 6113–6127 (1988).
17
H. Ibrahim, M. Héjjas, N. Schwentner, Tracing, amplifying, and steering chromophore-bath coherences by ultrashort pulse trains. Phys. Rev. Lett. 102, 088301 (2009).
18
R. Fung, A. M. Hanna, O. Vendrell, S. Ramakrishna, T. Seideman, R. Santra, A. Ourmazd, A. Ourmazd, Dynamics from noisy data with extreme timing uncertainty. Nature 532, 471–475 (2016).
19
X. Ding, R. Forbes, M. Kübel, K. F. Lee, M. Spanner, A. Y. Naumov, D. M. Villeneuve, A. Stolow, P. B. Corkum, A. Staudte, Threshold photodissociation dynamics of NO2 studied by time-resolved cold target recoil ion momentum spectroscopy. J. Chem. Phys. 151, 174301 (2019).
20
E. S. Yeung, C. B. Moore, Photochemistry of single vibronic levels of formaldehyde. J. Chem. Phys. 58, 3988–3998 (1973).
21
B. Fu, B. C. Shepler, J. M. Bowman, Three-state trajectory surface hopping studies of the photodissociation dynamics of formaldehyde on ab initio potential energy surfaces. J. Am. Chem. Soc. 133, 7957–7968 (2011).
22
S. A. Lahankar, S. D. Chambreau, D. Townsend, F. Suits, J. Farnum, X. Zhang, J. M. Bowman, A. G. Suits, The roaming atom pathway in formaldehyde decomposition. J. Chem. Phys. 125, 44303 (2006).
23
S. A. Lahankar, S. D. Chambreau, X. Zhang, J. M. Bowman, A. G. Suits, Energy dependence of the roaming atom pathway in formaldehyde decomposition. J. Chem. Phys. 126, 044314 (2007).
24
S. A. Lahankar, V. Goncharov, F. Suits, J. D. Farnum, J. M. Bowman, A. G. Suits, Further aspects of the roaming mechanism in formaldehyde dissociation. Chem. Phys. 347, 288–299 (2008).
25
X. Wang, P. L. Houston, J. M. Bowman, A new (multi-reference configuration interaction) potential energy surface for H2CO and preliminary studies of roaming. Philos. Trans. A Math Phys. Eng. Sci. 375, 20160194 (2017).
26
A. D. Bandrauk, M. L. Sink, Photodissociation in intense laser fields: Predissociation analogy. J. Chem. Phys. 74, 1110–1117 (1981).
27
H. Ibrahim, C. Lefebvre, A. D. Bandrauk, A. Staudte, F. Légaré, H2: the benchmark molecule for ultrafast science and technologies. J. Phys. At. Mol. Opt. Phys. 51, 042002 (2018).
28
P. L. Houston, R. Conte, J. M. Bowman, Roaming under the microscope: Trajectory study of formaldehyde dissociation. J. Phys. Chem. A 120, 5103–5114 (2016).
29
J. D. Farnum, X. Zhang, J. M. Bowman, Formaldehyde photodissociation: Dependence on total angular momentum and rotational alignment of the CO product. J. Chem. Phys. 126, 134305 (2007).
30
T. Endo, P. S. Neville, V. Wanie, S. Beaulieu, C. Qu, J. Deschamps, P. Lassonde, E. B. Schmidt, H. Fujise, M. Fushitani, A. Hishikawa, L. P. Houston, M. J. Bowman, S. M. Schuurman, F. Légaré, H. Ibrahim, Dataset for: Capturing roaming molecular fragments in real-time, ion momentum data, photoelectron data, quasiclassical simulation data with five different wavelengths, potential energies, and gradients of triply charged state. Zenodo (2020); https://doi.org/10.5281/zenodo.4089116.
31
D. J. Kane, R. Trebino, Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. 29, 571–579 (1993).
32
B. Wales, E. Bisson, R. Karimi, J.-C. Kieffer, F. Légaré, J. Sanderson, A coincidence detection algorithm for improving detection rates in coulomb explosion imaging. Nucl. Instrum. Methods Phys. Res. A 667, 11–15 (2012).
33
Y. Hikosaka, M. Fushitani, A. Matsuda, C.-M. Tseng, A. Hishikawa, E. Shigemasa, M. Nagasono, K. Tono, T. Togashi, H. Ohashi, H. Kimura, Y. Senba, M. Yabashi, T. Ishikawa, Multiphoton double ionization of Ar in intense extreme ultraviolet laser fields studied by shot-by-shot photoelectron spectroscopy. Phys. Rev. Lett. 105, 133001 (2010).
34
R. D. McQuigg, J. G. Calvert, The photodecomposition of CH2O, CD2O, CHDO, and CH2O-CD2O mixtures at Xenon flash lamp intensities. J. Am. Chem. Soc. 91, 1590–1599 (1969).
35
P. L. Houston, C. B. Moore, Formaldehyde photochemistry: Appearance rate, vibrational relaxation and energy distribution of the CO product. J. Chem. Phys. 65, 757–770 (1976).
36
J. C. Weisshaar, A. P. Baronavski, A. Cabello, C. B. Moore, Collisionless decay, vibrational relaxation, and intermediate case quenching of S1 formaldehyde. J. Chem. Phys. 69, 4720–4731 (1978).
37
J. C. Weisshaar, C. B. Moore, Collisionless nonradiative decay rates of single rotational levels of S1 formaldehyde. J. Chem. Phys. 70, 5135–5146 (1979).
38
D. J. Clouthier, D. A. Ramsay, The spectroscopy of formaldehyde and thioformaldehyde. Annu. Rev. Phys. Chem. 34, 31–58 (1983).
39
W. F. Polik, D. R. Guyer, C. B. Moore, Stark Level-crossing spectroscopy of S0 formaldehyde eigenstates at the dissociation threshold. J. Chem. Phys. 92, 3453–3470 (1990).
40
W. F. Polik, D. R. Guyer, W. H. Miller, C. B. Moore, Eigenstate-resolved unimolecular reaction dynamics: Ergodic character of S0 formaldehyde at the dissociation threshold. J. Chem. Phys. 92, 3471–3484 (1990).
41
A. Gratien, E. Nilsson, J.-F. Doussin, M. S. Johnson, C. J. Nielsen, Y. Stenstrøm, B. Picquet-Varrault, UV and IR absorption cross-sections of HCHO, HCDO, and DCDO. J. Phys. Chem. A 111, 11506–11513 (2007).
42
E. S. Yeung, C. B. Moore, Predissociation model for formaldehyde. J. Chem. Phys. 60, 2139–2147 (1974).
43
R. G. Miller, E. K. C. Lee, Single vibronic level photochemistry of formaldehydes in the Ã1A2 state: Radiative and nonradiative processes in H2CO, HDCO, and D2CO. J. Chem. Phys. 68, 4448–4464 (1978).
44
M. Araújo, B. Lasorne, A. L. Magalhães, G. A. Worth, M. J. Bearpark, M. A. Robb, The molecular dissociation of formaldehyde at medium photoexcitation energies: A quantum chemistry and direct quantum dynamics study. J. Chem. Phys. 131, 144301 (2009).
45
W. Siebrand, D. F. Williams, Radiationless transitions in polyatomic molecules. III. Anharmonicity, isotope effects, and singlet‐to‐ground‐state transitions in aromatic hydrocarbons. J. Chem. Phys. 49, 1860–1871 (1968).
46
J. Jortner, S. A. Rice, R. M. Hochstrasser, “Radiationless transitions in photochemistry,” in Advances in Photochemistry, J. N. Pitts Jr., G. S. Hammond, W. A. Noyes Jr., Eds. (Wiley, 2007), vol. 7, pp. 149–309.
47
H. Lischka, R. Shepard, I. Shavitt, R. M. Pitzer, M. Dallos, Th. Müller, P. G. Szalay, F. B. Brown, R. Ahlrichs, H. J. Böhm, A. Chang, D. C. Comeau, R. Gdanitz, H. Dachsel, C. Ehrhardt, M. Ernzerhof, P. Höchtl, S. Irle, G. Kedziora, T. Kovar, V. Parasuk, M. J. M. Pepper, P. Scharf, H. Schiffer, M. Schindler, M. Schüler, M. Seth, E. A. Stahlberg, J.-G. Zhao, S. Yabushita, Z. Zhang, M. Barbatti, S. Matsika, M. Schuurman, D. R. Yarkony, S. R. Brozell, E. V. Beck, J.-P. Blaudeau, M. Ruckenbauer, B. Sellner, F. Plasser, J. J. Szymczak, R. F. K. Spada, A. Das, Columbus, an ab initio electronic structure program, release 7.0 (2017).
48
I. Fdez Galván, M. Vacher, A. Alavi, C. Angeli, F. Aquilante, J. Autschbach, J. J. Bao, S. I. Bokarev, N. A. Bogdanov, R. K. Carlson, L. F. Chibotaru, J. Creutzberg, N. Dattani, M. G. Delcey, S. S. Dong, A. Dreuw, L. Freitag, L. M. Frutos, L. Gagliardi, F. Gendron, A. Giussani, L. González, G. Grell, M. Guo, C. E. Hoyer, M. Johansson, S. Keller, S. Knecht, G. Kovačević, E. Källman, G. Li Manni, M. Lundberg, Y. Ma, S. Mai, J. P. Malhado, P. Å. Malmqvist, P. Marquetand, S. A. Mewes, J. Norell, M. Olivucci, M. Oppel, Q. M. Phung, K. Pierloot, F. Plasser, M. Reiher, A. M. Sand, I. Schapiro, P. Sharma, C. J. Stein, L. K. Sørensen, D. G. Truhlar, M. Ugandi, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, O. Weser, T. A. Wesołowski, P. O. Widmark, S. Wouters, A. Zech, J. P. Zobel, R. Lindh, OpenMolcas: From source code to insight. J. Chem. Theory Comput. 15, 5925–5964 (2019).
49
C. A. Smith, F. D. Pope, B. Cronin, C. B. Parkes, A. J. Orr-Ewing, Absorption cross sections of formaldehyde at wavelengths from 300 to 340 nm at 294 and 245 K. J. Phys. Chem. A 110, 11645–11653 (2006).
50
S. Carter, S. J. Culik, J. M. Bowman, Vibrational self-consistent field method for many-mode systems: A new approach and application to the vibrations of CO adsorbed on Cu(100). J. Chem. Phys. 107, 10458–10469 (1997).
51
S. Carter, J. M. Bowman, The adiabatic rotation approximation for rovibrational energies of many-mode systems: Description and tests of the method. J. Chem. Phys. 108, 4397–4404 (1998).
52
S. Carter, J. M. Bowman, N. C. Handy, Extensions and tests of “multimode”: A code to obtain accurate vibration/rotation energies of many-mode molecules. Theor. Chem. Acc. 100, 191–198 (1998).
53
B. J. Braams, J. M. Bowman, Permutationally invariant potential energy surfaces in high dimensionality. Int. Rev. Phys. Chem. 28, 577–606 (2009).
54
Z. Xie, J. M. Bowman, Permutationally invariant polynomial basis for molecular energy surface fitting via monomial symmetrization. J. Chem. Theory Comput. 6, 26–34 (2010).
55
C. Qu, Q. Yu, J. M. Bowman, Permutationally invariant potential energy surfaces. Annu. Rev. Phys. Chem. 69, 151–175 (2018).
56
A. Nandi, C. Qu, J. M. Bowman, Using gradients in permutationally invariant polynomial potential fitting: A demonstration for CH4 using as few as 100 configurations. J. Chem. Theory Comput. 15, 2826–2835 (2019).
57
T. Zuo, A. D. Bandrauk, Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers. Phys. Rev. A 52, R2511–R2514 (1995).
58
F. Légaré, I. V. Litvinyuk, P. W. Dooley, F. Quéré, A. D. Bandrauk, D. M. Villeneuve, P. B. Corkum, Time-resolved double ionization with few cycle laser pulses. Phys. Rev. Lett. 91, 093002 (2003).
59
N. Herath, A. G. Suits, Roaming radical reactions. J. Phys. Chem. Lett. 2, 642–647 (2011).
60
B. C. Shepler, E. Epifanovsky, P. Zhang, J. M. Bowman, A. I. Krylov, K. Morokuma, Photodissociation dynamics of formaldehyde initiated at the T1/S0 minimum energy crossing configurations. J. Phys. Chem. A 112, 13267–13270 (2008).
61
E. Lötstedt, T. Kato, K. Yamanouchi, Enhanced ionization of acetylene in intense laser fields. Phys. Rev. A 85, 041402 (2012).
62
X. Xie, S. Roither, M. Schöffler, H. Xu, S. Bubin, E. Lötstedt, S. Erattuphuza, A. Iwasaki, D. Kartashov, K. Varga, G. G. Paulus, A. Baltuška, K. Yamanouchi, M. Kitzler, Role of proton dynamics in efficient photoionization of hydrocarbon molecules. Phys. Rev. A 89, 023429 (2014).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 370 | Issue 6520
27 November 2020

Submission history

Received: 17 April 2020
Accepted: 23 October 2020
Published in print: 27 November 2020

Permissions

Request permissions for this article.

Acknowledgments

We thank A. Laramée and G. Lebrun for technical support; B. Wales and J. Sanderson for providing the analysis software for the CEI measurement files; A. Stolow for discussions; S. Gräfe for simulations on the ionization potential; and the reviewers for comments that truly helped to improve the reliability of our analysis. Funding: This work was supported by the Canada Foundation for Innovation, NSERC, FRQNT, the JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (grant no. S2601 to T.E. and A.H.), and the World Research Unit (B-1) of Reaction Infography (R-ing) at Nagoya University, Japan (A.H. and F.L.). V.W. and S.B. acknowledge financial support from the NSERC-Vanier fellowships program. J.M.B acknowledges financial support from NASA (grant no. 80NSSC20K0360). Author contributions: T.E. performed all experiments and data analysis. V.W., S.B., J.D., P.L., and B.E.S. assisted with CEI experiments in ALLS. F.L. was responsible for the ALLS facility at INRS in Canada. H.F., M.F., and A.H. assisted with the photoelectron experiments and analysis at Nagoya University, Japan. S.P.N. and M.S.S. provided the quantum dynamics simulations. P.L.H. supervised and performed trajectory calculations and analysis. J.M.B. directed the construction of PESs and trajectory code. C.Q. and T.E. calculated the propagation on the D2CO3+ PES. A.H. and F.L. discussed results and provided classical interpretation. H.I. conceived and directed the project, supervised experiments, and analyzed data. T.E., P.L.H., J.M.B., and H.I. wrote the manuscript with assistance from all other authors. Competing interests: The authors declare no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the main text or the supplementary materials. All data have been uploaded to Zenodo (30).

Authors

Affiliations

Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Quebec J3X 1S2, Canada.
Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, Japan.
Simon P. Neville
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
Vincent Wanie
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Quebec J3X 1S2, Canada.
Present address: Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany.
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Quebec J3X 1S2, Canada.
Present address: Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany.
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Quebec J3X 1S2, Canada.
Present address: Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Philippe Lassonde
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Quebec J3X 1S2, Canada.
Bruno E. Schmidt
few-cycle Inc., Montreal, Quebec H1L 5W5, Canada.
Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
Research Center for Materials Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14852, USA.
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA 30322, USA.
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Quebec J3X 1S2, Canada.
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Quebec J3X 1S2, Canada.

Funding Information

Fonds de Recherche du Québec - Nature et Technologies

Notes

§
Corresponding author. Email: [email protected] (F.L.); [email protected] (H.I.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. A molecular road movie, Physics Today, 74, 7, (62-63), (2021).https://doi.org/10.1063/PT.3.4801
    Crossref
  2. Filming ultrafast roaming-mediated isomerization of bismuth triiodide in solution, Nature Communications, 12, 1, (2021).https://doi.org/10.1038/s41467-021-25070-z
    Crossref
  3. Time-Resolved Pair-Correlated Imaging of the Photodissociation of Acetaldehyde at 267 nm: Pathway Partitioning, The Journal of Physical Chemistry A, 125, 29, (6450-6460), (2021).https://doi.org/10.1021/acs.jpca.1c04773
    Crossref
  4. Tracking the nuclear movement of the carbonyl sulfide cation after strong-field ionization by time-resolved Coulomb-explosion imaging, Physical Review A, 103, 5, (2021).https://doi.org/10.1103/PhysRevA.103.053103
    Crossref
  5. Conformer-specific photochemistry imaged in real space and time, Science, 374, 6564, (178-182), (2021)./doi/10.1126/science.abk3132
    Abstract
  6. Orbiting resonances in formaldehyde reveal coupling of roaming, radical, and molecular channels, Science, 374, 6571, (1122-1127), (2021)./doi/10.1126/science.abk0634
    Abstract
  7. Controlling H3+ Formation From Ethane Using Shaped Ultrafast Laser Pulses, Frontiers in Physics, 9, (2021).https://doi.org/10.3389/fphy.2021.691727
    Crossref
  8. Multi-Particle Three-Dimensional Covariance Imaging: “Coincidence” Insights into the Many-Body Fragmentation of Strong-Field Ionized D 2 O , The Journal of Physical Chemistry Letters, (8302-8308), (2021).https://doi.org/10.1021/acs.jpclett.1c02481
    Crossref
  9. Imaging intramolecular hydrogen migration with time- and momentum-resolved photoelectron diffraction, Physical Chemistry Chemical Physics, (2021).https://doi.org/10.1039/D1CP02055B
    Crossref
  10. Smallest Organic Tetracation in the Gas Phase: Stability of Multiply Charged Diiodoacetylene Produced in Intense Femtosecond Laser Fields, The Journal of Physical Chemistry A, (2021).https://doi.org/10.1021/acs.jpca.1c06390
    Crossref
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media