Advertisement

Plasmodium's inner clock

Malarial fevers are notably regular, occurring when parasitized red blood cells rupture synchronously to release replicated parasites. It has long been speculated that the Plasmodium parasites that cause malaria must therefore have intrinsic circadian clocks to be able to synchronize like this. Two groups have now probed gene expression in experiments and models using data obtained during the developmental cycles of P. falciparum in vitro and in the mouse model of P. chabaudi malaria. Smith et al. discovered that four strains of P. falciparum have circadian and cell cycle oscillators, each with distinctive periodicities that can be experimentally manipulated. Rijo-Ferreira et al. found that gene expression in P. chabaudi was strikingly rhythmic, persisted during constant darkness and in infections of arrhythmic mice, and synchronized by entraining to the host's periodicity.
Science, this issue p. 754, p. 746

Abstract

The blood stage of the infection of the malaria parasite Plasmodium falciparum exhibits a 48-hour developmental cycle that culminates in the synchronous release of parasites from red blood cells, which triggers 48-hour fever cycles in the host. This cycle could be driven extrinsically by host circadian processes or by a parasite-intrinsic oscillator. To distinguish between these hypotheses, we examine the P. falciparum cycle in an in vitro culture system and show that the parasite has molecular signatures associated with circadian and cell cycle oscillators. Each of the four strains examined has a different period, which indicates strain-intrinsic period control. Finally, we demonstrate that parasites have low cell-to-cell variance in cycle period, on par with a circadian oscillator. We conclude that an intrinsic oscillator maintains Plasmodium’s rhythmic life cycle.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S18
Tables S1 to S8
References (5258)
MDAR Reproducibility Checklist
Data S1 to S4

Resources

File (aba4357_datas1.xlsx)
File (aba4357_datas2.xlsx)
File (aba4357_datas3.xlsx)
File (aba4357_datas4.xlsx)
File (aba4357_mdar-checklist.pdf)
File (aba4357_smith_sm.pdf)

References and Notes

1
D. Kwiatkowski, M. Nowak, Periodic and chaotic host-parasite interactions in human malaria. Proc. Natl. Acad. Sci. U.S.A. 88, 5111–5113 (1991).
2
F. Hawking, The clock of the malaria parasite. Sci. Am. 222, 123–131 (1970).
3
P. Gautret, E. Deharo, R. Tahar, A. G. Chabaud, I. Landau, The adjustment of the schizogonic cycle of Plasmodium chabaudi chabaudi in the blood to the circadian rhythm of the host. Parasite 2, 69–74 (1995).
4
A. J. O’Donnell, N. Mideo, S. E. Reece, Disrupting rhythms in Plasmodium chabaudi: Costs accrue quickly and independently of how infections are initiated. Malar. J. 12, 372 (2013).
5
S. E. Reece, K. F. Prior, N. Mideo, The Life and Times of Parasites: Rhythms in Strategies for Within-host Survival and Between-host Transmission. J. Biol. Rhythms 32, 516–533 (2017).
6
C. T. Hotta, M. L. Gazarini, F. H. Beraldo, F. P. Varotti, C. Lopes, R. P. Markus, T. Pozzan, C. R. S. Garcia, Calcium-dependent modulation by melatonin of the circadian rhythm in malarial parasites. Nat. Cell Biol. 2, 466–468 (2000).
7
I. C. Hirako, P. A. Assis, N. S. Hojo-Souza, G. Reed, H. Nakaya, D. T. Golenbock, R. S. Coimbra, R. T. Gazzinelli, Daily Rhythms of TNFα Expression and Food Intake Regulate Synchrony of Plasmodium Stages with the Host Circadian Cycle. Cell Host Microbe 23, 796–808.e6 (2018).
8
J. S. O’Neill, A. B. Reddy, Circadian clocks in human red blood cells. Nature 469, 498–503 (2011).
9
K. Nozue, J. N. Maloof, Diurnal regulation of plant growth. Plant Cell Environ. 29, 396–408 (2006).
10
E. E. Zhang, S. A. Kay, Clocks not winding down: Unravelling circadian networks. Nat. Rev. Mol. Cell Biol. 11, 764–776 (2010).
11
J. S. Takahashi, Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).
12
R. J. Konopka, S. Benzer, Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 68, 2112–2116 (1971).
13
A. J. Millar, M. Straume, J. Chory, N. H. Chua, S. A. Kay, The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267, 1163–1166 (1995).
14
D. A. Orlando, C. Y. Lin, A. Bernard, J. Y. Wang, J. E. S. Socolar, E. S. Iversen, A. J. Hartemink, S. B. Haase, Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 453, 944–947 (2008).
15
C. T. Harbison, D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac, T. W. Danford, N. M. Hannett, J.-B. Tagne, D. B. Reynolds, J. Yoo, E. G. Jennings, J. Zeitlinger, D. K. Pokholok, M. Kellis, P. A. Rolfe, K. T. Takusagawa, E. S. Lander, D. K. Gifford, E. Fraenkel, R. A. Young, Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).
16
R. Zhang, N. F. Lahens, H. I. Ballance, M. E. Hughes, J. B. Hogenesch, A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl. Acad. Sci. U.S.A. 111, 16219–16224 (2014).
17
D. Walliker, I. A. Quakyi, T. E. Wellems, T. F. McCutchan, A. Szarfman, W. T. London, L. M. Corcoran, T. R. Burkot, R. Carter, Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 1661–1666 (1987).
18
J. B. Jensen, W. Trager, Plasmodium falciparum in culture: Establishment of additional strains. Am. J. Trop. Med. Hyg. 27, 743–746 (1978).
19
G. A. Awandare, C. Spadafora, J. K. Moch, S. Dutta, J. D. Haynes, J. A. Stoute, Plasmodium falciparum field isolates use complement receptor 1 (CR1) as a receptor for invasion of erythrocytes. Mol. Biochem. Parasitol. 177, 57–60 (2011).
20
P. K. Rathod, T. McErlean, P. C. Lee, Variations in frequencies of drug resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 94, 9389–9393 (1997).
21
M. E. Hughes, J. B. Hogenesch, K. Kornacker, JTK_CYCLE: An efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms 25, 372–380 (2010).
22
M. Llinás, Z. Bozdech, E. D. Wong, A. T. Adai, J. L. DeRisi, Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucleic Acids Res. 34, 1166–1173 (2006).
23
Z. Bozdech, M. Llinás, B. L. Pulliam, E. D. Wong, J. Zhu, J. L. DeRisi, The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLOS Biol. 1, e5 (2003).
24
L. S. Mure, H. D. Le, G. Benegiamo, M. W. Chang, L. Rios, N. Jillani, M. Ngotho, T. Kariuki, O. Dkhissi-Benyahya, H. M. Cooper, S. Panda, Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359, eaao0318 (2018).
25
R. F. Stellingwerf, Period Determination Using Phase Dispersion Minimization. Astrophys. J. 224, 953–960 (1978).
26
M. E. Hughes, L. DiTacchio, K. R. Hayes, C. Vollmers, S. Pulivarthy, J. E. Baggs, S. Panda, J. B. Hogenesch, Harmonics of circadian gene transcription in mammals. PLOS Genet. 5, e1000442 (2009).
27
B. M. Martins, A. K. Das, L. Antunes, J. C. Locke, Frequency doubling in the cyanobacterial circadian clock. Mol. Syst. Biol. 12, 896 (2016).
28
M. E. Hughes, H.-K. Hong, J. L. Chong, A. A. Indacochea, S. S. Lee, M. Han, J. S. Takahashi, J. B. Hogenesch, Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue. PLOS Genet. 8, e1002835 (2012).
29
R. C. Moseley, R. Mewalal, F. Motta, G. A. Tuskan, S. Haase, X. Yang, Conservation and Diversification of Circadian Rhythmicity Between a Model Crassulacean Acid Metabolism Plant Kalanchoë fedtschenkoi and a Model C3 Photosynthesis Plant Arabidopsis thaliana. Front Plant Sci 9, 1757 (2018).
30
E. Berry, B. Cummins, R. R. Nerem, L. M. Smith, S. B. Haase, T. Gedeon, Using extremal events to characterize noisy time series. J. Math. Biol. 80, 1523–1557 (2020).
31
L. A. Simmons Kovacs, M. B. Mayhew, D. A. Orlando, Y. Jin, Q. Li, C. Huang, S. I. Reed, S. Mukherjee, S. B. Haase, Cyclin-dependent kinases are regulators and effectors of oscillations driven by a transcription factor network. Mol. Cell 45, 669–679 (2012).
32
C. J. Janse, A. Haghparast, M. A. Sperança, J. Ramesar, H. Kroeze, H. A. del Portillo, A. P. Waters, Malaria parasites lacking eef1a have a normal S/M phase yet grow more slowly due to a longer G1 phase. Mol. Microbiol. 50, 1539–1551 (2003).
33
W. Trager, J. B. Jensen, Human malaria parasites in continuous culture. Science 193, 673–675 (1976).
34
D. A. Orlando, C. Y. Lin, A. Bernard, E. S. Iversen, A. J. Hartemink, S. B. Haase, A probabilistic model for cell cycle distributions in synchrony experiments. Cell Cycle 6, 478–488 (2007).
35
D. K. Welsh, S. H. Yoo, A. C. Liu, J. S. Takahashi, S. A. Kay, Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14, 2289–2295 (2004).
36
T. L. Leise, C. W. Wang, P. J. Gitis, D. K. Welsh, Persistent cell-autonomous circadian oscillations in fibroblasts revealed by six-week single-cell imaging of PER2:LUC bioluminescence. PLOS ONE 7, e33334 (2012).
37
M. A. Greischar, S. E. Reece, N. J. Savill, N. Mideo, The Challenge of Quantifying Synchrony in Malaria Parasites. Trends Parasitol. 35, 341–355 (2019).
38
K. G. Le Roch, Y. Zhou, P. L. Blair, M. Grainger, J. K. Moch, J. D. Haynes, P. De La Vega, A. A. Holder, S. Batalov, D. J. Carucci, E. A. Winzeler, Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003).
39
S. F. Boxall, L. V. Dever, J. Kneřová, P. D. Gould, J. Hartwell, Phosphorylation of Phosphoenolpyruvate Carboxylase Is Essential for Maximal and Sustained Dark CO2 Fixation and Core Circadian Clock Operation in the Obligate Crassulacean Acid Metabolism Species Kalanchoë fedtschenkoi. Plant Cell 29, 2519–2536 (2017).
40
S. B. Haase, C. Wittenberg, Topology and control of the cell-cycle-regulated transcriptional circuitry. Genetics 196, 65–90 (2014).
41
H. B. Reilly Ayala, M. A. Wacker, G. Siwo, M. T. Ferdig, Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum. BMC Genomics 11, 577 (2010).
42
D. O. Morgan, The Cell Cycle: Principles of Control (Primers in Biology, New Science Press, 2007).
43
H. J. Painter, T. L. Campbell, M. Llinás, The Apicomplexan AP2 family: Integral factors regulating Plasmodium development. Mol. Biochem. Parasitol. 176, 1–7 (2011).
44
C. Bertoli, J. M. Skotheim, R. A. de Bruin, Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 14, 518–528 (2013).
45
A. Farnert, G. Snounou, I. Rooth, A. Bjorkman, Daily dynamics of Plasmodium falciparum subpopulations in asymptomatic children in a holoendemic area. Am. J. Trop. Med. Hyg. 56, 538–547 (1997).
46
T. Roenneberg, S. Daan, M. Merrow, The art of entrainment. J. Biol. Rhythms 18, 183–194 (2003).
47
A. J. O’Donnell, P. Schneider, H. G. McWatters, S. E. Reece, Fitness costs of disrupting circadian rhythms in malaria parasites. Proc. Biol. Sci. 278, 2429–2436 (2011).
48
F. Rijo-Ferreira, D. Pinto-Neves, N. L. Barbosa-Morais, J. S. Takahashi, L. M. Figueiredo, Trypanosoma brucei metabolism is under circadian control. Nat. Microbiol. 2, 17032 (2017).
49
K. Roche, kimberlyroche/plasmodium_periodicity: First release, version v1.0.0, Zenodo (2020); http://doi.org/10.5281/zenodo.3710104.
50
B. Cummins, breecummins/2019-Intrinsic-Oscillator-Malaria: Version 0.1.0, version v0.1.0, Zenodo (2020); http://doi.org/10.5281/zenodo.3710436.
51
F. C. Motta, P. falciparum synchrony loss, Zenodo (2020); http://doi.org/10.5281/zenodo.3712146.
52
J. D. Haynes, J. K. Moch, Automated synchronization of Plasmodium falciparum parasites by culture in a temperature-cycling incubator. Methods Mol. Med. 72, 489–497 (2002).
53
A. R. Leman, S. L. Bristow, S. B. Haase, Analyzing transcription dynamics during the budding yeast cell cycle. Methods Mol. Biol. 1170, 295–312 (2014).
54
A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson, T. R. Gingeras, STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
55
K. Sorber, M. T. Dimon, J. L. DeRisi, RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts. Nucleic Acids Res. 39, 3820–3835 (2011).
56
C. Trapnell, D. G. Hendrickson, M. Sauvageau, L. Goff, J. L. Rinn, L. Pachter, Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).
57
R. Nerem, P. Crawford-Kahrl, B. Cummins, T. Gedeon, A poset metric from the directed maximum common edge subgraph. arXiv:1910.14638 [cs.DS] (31 October 2019).
58
I. Daubechies, Ten Lectures on Wavelets (CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, 1992).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 368 | Issue 6492
15 May 2020

Submission history

Received: 3 December 2019
Accepted: 6 April 2020
Published in print: 15 May 2020

Permissions

Request permissions for this article.

Acknowledgments

We thank D. K. Welsh (Department of Psychiatry, University of California, San Diego) for providing us with data from the primary fibroblasts. We also thank R. Moseley and S. Campione for critical reading of the manuscript and S. Campione for technical help with figures. Material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting true views of the Department of the Army or the Department of Defense. Funding: F.C.M., S.B.H., J.H., A.R.L., and C.M.K. were funded by the Defense Advanced Research Projects Agency, D12AP00025. S.B.H., L.M.S., T.G., and B.C. were also funded by NIH 1R01GM126555-01. T.G. and B.C. were funded by NSF DMS-1839299. R.R.N. was funded by NIH R01 GM126555-01. S.B.H. and J.H. are members of Mimetics, LLC. J.H. is CEO of Geometric Data Analytics, Inc. T.G. and B.C. are on the board of Kanto, Inc. Author contributions: S.B.H. and J.H. conceived of the study. S.B.H., J.H., A.R.L., N.C.W., and G.C. collaborated on the experimental design. N.C.W., G.C., and J.K.M. performed parasite synchrony and release time-series experiments. A.R.L. processed samples for RNA-seq. C.M.K. designed the RNA-seq alignment and analysis pipeline and performed preliminary analyses. L.M.S. analyzed the transcriptomes for periodicity, presence of harmonics, and qualitative ordering conservation. K.E.R. developed the data-wrapping approach and assisted in period-length estimates. T.G., R.R.N., and B.C. developed the quantitative partial ordering approach and determined quantitative ordering conservation. F.C.M. constructed models of cell-to-cell variance and determined the effect on synchrony loss. L.M.S., S.B.H., F.C.M., and B.C. wrote the manuscript. Competing interests: The authors declare no competing interests. Data and materials availability: All data used in the paper are available in the supplementary materials. RNA sequences are deposited at the Gene Expression Omnibus under series GSE141653. All code used in the analyses is available in public repositories (4951).

Authors

Affiliations

Department of Biology, Duke University, Durham, NC, USA.
Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, USA.
Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
Present address: TTMS Inc., Pittsburgh, PA, USA.
J. Kathleen Moch
Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA.
Present address: Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, Canada.
Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA.
Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA.
Department of Biology, Duke University, Durham, NC, USA.
Present address: Department of Molecular and Systems Biology, Dartmouth College, Hanover, NH, USA.
Department of Biology, Duke University, Durham, NC, USA.
Present address: Mimetics LLC, Durham, NC, USA.
John Harer
Department of Mathematics, Duke University, Durham, NC, USA.
Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA.
Norman C. Waters
Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
Present address: Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
Department of Biology, Duke University, Durham, NC, USA.
Department of Medicine, Duke University, Durham, NC, USA.

Funding Information

Notes

#
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Synchrony between daily rhythms of malaria parasites and hosts is driven by an essential amino acid, Wellcome Open Research, 6, (186), (2021).https://doi.org/10.12688/wellcomeopenres.16894.1
    Crossref
  2. Constant Light and Frequent Schedule Changes Do Not Impact Resistance to Parasites in Monarch Butterflies, Journal of Biological Rhythms, 36, 3, (286-296), (2021).https://doi.org/10.1177/0748730420985312
    Crossref
  3. Ecology of asynchronous asexual replication: the intraerythrocytic development cycle of Plasmodium berghei is resistant to host rhythms, Malaria Journal, 20, 1, (2021).https://doi.org/10.1186/s12936-021-03643-z
    Crossref
  4. Statistical mechanics of clock gene networks underlying circadian rhythms, Applied Physics Reviews, 8, 2, (021313), (2021).https://doi.org/10.1063/5.0029993
    Crossref
  5. Long-lasting infectivity of Plasmodium vivax present in malarial patient blood to Anopheles aquasalis, Experimental Parasitology, 222, (108064), (2021).https://doi.org/10.1016/j.exppara.2021.108064
    Crossref
  6. Malaria parasites and circadian rhythm: New insights into an old puzzle, Current Research in Microbial Sciences, 2, (100017), (2021).https://doi.org/10.1016/j.crmicr.2020.100017
    Crossref
  7. A nuclear protein, PfMORC confers melatonin dependent synchrony of the human malaria parasite P. falciparum in the asexual stage, Scientific Reports, 11, 1, (2021).https://doi.org/10.1038/s41598-021-81235-2
    Crossref
  8. Molecular basis of synchronous replication of malaria parasites in the blood stage, Current Opinion in Microbiology, 63, (210-215), (2021).https://doi.org/10.1016/j.mib.2021.08.002
    Crossref
  9. Plasmodium vivax pre-erythrocytic stages and the latent hypnozoite, Parasitology International, 85, (102447), (2021).https://doi.org/10.1016/j.parint.2021.102447
    Crossref
  10. Synchrony between daily rhythms of malaria parasites and hosts is driven by an essential amino acid, Wellcome Open Research, 6, (186), (2021).https://doi.org/10.12688/wellcomeopenres.16894.2
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media