Advertisement

A topological light funnel

Because most physical systems cannot be totally isolated from their environment, some degree of dissipation or loss is expected. The successful operation of such systems generally relies on mitigating for that loss. Mathematically, such external interactions are described as non-Hermitian. Recent work has shown that controlling the gain and loss in these systems gives rise to a wide variety of exotic phenomena not expected for their isolated Hermitian counterparts. Using a time-dependent photonic lattice in which the topological properties can be controlled, Weidemann et al. show that such a structure can efficiently funnel light to the interface irrespective of the point of incidence on the lattice. Such control of the topological properties could be useful for nanophotonic applications in integrated optical chip platforms.
Science, this issue p. 311

Abstract

Dissipation is a general feature of non-Hermitian systems. But rather than being an unavoidable nuisance, non-Hermiticity can be precisely controlled and hence used for sophisticated applications, such as optical sensors with enhanced sensitivity. In our work, we implement a non-Hermitian photonic mesh lattice by tailoring the anisotropy of the nearest-neighbor coupling. The appearance of an interface results in a complete collapse of the entire eigenmode spectrum, leading to an exponential localization of all modes at the interface. As a consequence, any light field within the lattice travels toward this interface, irrespective of its shape and input position. On the basis of this topological phenomenon, called the “non-Hermitian skin effect,” we demonstrate a highly efficient funnel for light.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S9

Resources

File (aaz8727_weidemann_sm.pdf)

References and Notes

1
C. M. Bender, S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).
2
R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, D. N. Christodoulides, Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).
3
R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani, Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007).
4
C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip, Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010).
5
A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, U. Peschel, Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012).
6
M. A. Miri, A. Alù, Exceptional points in optics and photonics. Science 363, eaar7709 (2019).
7
T. Eichelkraut, R. Heilmann, S. Weimann, S. Stützer, F. Dreisow, D. N. Christodoulides, S. Nolte, A. Szameit, Mobility transition from ballistic to diffusive transport in non-Hermitian lattices. Nat. Commun. 4, 2533 (2013).
8
H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan, Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017).
9
L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, X. Zhang, Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).
10
H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, M. Khajavikhan, Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).
11
M. Kremer, T. Biesenthal, L. J. Maczewsky, M. Heinrich, R. Thomale, A. Szameit, Demonstration of a two-dimensional PT-symmetric crystal. Nat. Commun. 10, 435 (2019).
12
F. Klauck, L. Teuber, M. Ornigotti, M. Heinrich, S. Scheel, A. Szameit, Observation of PT-symmetric quantum interference. Nat. Photonics 13, 883–887 (2019).
13
L. Xiao, X. Zhan, Z. H. Bian, K. K. Wang, X. Zhang, X. P. Wang, J. Li, K. Mochizuki, D. Kim, N. Kawakami, W. Yi, H. Obuse, B. C. Sanders, P. Xue, Observation of topological edge states in parity–time-symmetric quantum walks. Nat. Phys. 13, 1117–1123 (2017).
14
A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, D. N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).
15
W. P. Su, J. R. Schrieffer, A. J. Heeger, Solitons in Polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
16
C. H. Lee, R. Thomale, Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 99, 201103 (2019).
17
S. Yao, Z. Wang, Edge States and Topological Invariants of Non-Hermitian Systems. Phys. Rev. Lett. 121, 086803 (2018).
18
A. Ghatak, M. Brandenbourger, J. van Wezel, C. Coulais, Observation of non-Hermitian topology and its bulk-edge correspondence. arXiv 1907.11619 [cond-mat.mes-hall] (26 July 2019).
19
T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T. Kiessling, L. W. Molenkamp, C. H. Lee, A. Szameit, M. Greiter, R. Thomale, Observation of bulk boundary correspondence breakdown in topolectrical circuits. arXiv 1907.11562 [cond-mat.mes-hall] (26 July 2019).
20
L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, P. Xue, Observation of non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys. 10.1038/s41567-020-0836-6 (2020).
21
A. Ghatak, T. Das, New topological invariants in non-Hermitian systems. J. Phys. Condens. Matter 31, 263001 (2019).
22
Y. Xiong, Why does bulk boundary correspondence fail in some non-hermitian topological models. J. Phys. Commun. 2, 035043 (2018).
23
T. E. Lee, Anomalous Edge State in a Non-Hermitian Lattice. Phys. Rev. Lett. 116, 133903 (2016).
24
A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex, Ch. Silberhorn, Photons walking the line: A quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502 (2010).
25
M. Wimmer, M.-A. Miri, D. Christodoulides, U. Peschel, Observation of Bloch oscillations in complex PT-symmetric photonic lattices. Sci. Rep. 5, 17760 (2015).
26
N. Hatano, D. R. Nelson, Localization Transitions in Non-Hermitian Quantum Mechanics. Phys. Rev. Lett. 77, 570–573 (1996).
27
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda, Topological Phases of Non-Hermitian Systems. Phys. Rev. X 8, 031079 (2018).
28
P. W. Anderson, Absence of Diffusion in Certain Random Lattices. Phys. Rev. 109, 1492–1505 (1958).
29
A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, I. Jex, Ch. Silberhorn, Decoherence and disorder in quantum walks: From ballistic spread to localization. Phys. Rev. Lett. 106, 180403 (2011).
30
S. Weidemann, M. Kremer, A. Szameit, Data Set for Topological Funneling of Light, Rostock University Publication Server (2020);

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 368 | Issue 6488
17 April 2020

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 16 October 2019
Accepted: 3 February 2020
Published in print: 17 April 2020

Permissions

Request permissions for this article.

Acknowledgments

We thank M. Wimmer for very useful discussions. Funding: The authors acknowledge funding from the Deutsche Forschungsgemeinschaft (BL 574/13-1, SZ 276/19-1, SZ 276/20-1, SZ 276/9-2, and 258499086–SFB 1170), the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter ct.qmat (39085490–EXC 2147), and the Alfried Krupp von Bohlen und Halbach Foundation. Author contributions: M.K. developed the theory and S.W. performed the experiments on the photonic mesh lattice. R.T. and A.S. supervised the project. All authors discussed the results and co-wrote the paper. The manuscript reflects the contributions of all authors. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All experimental data and any related experimental background information not mentioned in the text can be found at the Rostock University Publication Server repository (30).

Authors

Affiliations

Institute of Physics, University of Rostock, 18059 Rostock, Germany.
Institute of Physics, University of Rostock, 18059 Rostock, Germany.
Tobias Helbig
Department of Physics and Astronomy, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Tobias Hofmann
Department of Physics and Astronomy, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Alexander Stegmaier
Department of Physics and Astronomy, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Department of Physics and Astronomy, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Department of Physics and Astronomy, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
Institute of Physics, University of Rostock, 18059 Rostock, Germany.

Funding Information

Deutsche Forschungsgemeinschaft: 258499086 - SFB 1170
Deutsche Forschungsgemeinschaft: 39085490 - EXC 2147
Deutsche Forschungsgemeinschaft: 258499086 - SFB 1170
Deutsche Forschungsgemeinschaft: 39085490 - EXC 2147

Notes

*
These authors contributed equally to this work.
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Observation of Anderson localization beyond the spectrum of the disorder, Science Advances, 8, 21, (2022)./doi/10.1126/sciadv.abn7769
    Abstract
  2. Observation of photonic constant-intensity waves and induced transparency in tailored non-Hermitian lattices, Science Advances, 8, 21, (2022)./doi/10.1126/sciadv.abl7412
    Abstract
  3. Topologically Protected Exceptional Point with Local Non-Hermitian Modulation in an Acoustic Crystal, Physical Review Applied, 15, 1, (2021).https://doi.org/10.1103/PhysRevApplied.15.014025
    Crossref
  4. Square-root non-Bloch topological insulators in non-Hermitian ring resonators, Optics Express, 29, 6, (8462), (2021).https://doi.org/10.1364/OE.419852
    Crossref
  5. Quasi-stationary solutions in 1D non-Hermitian systems, Physics Letters A, 403, (127384), (2021).https://doi.org/10.1016/j.physleta.2021.127384
    Crossref
  6. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects, Chinese Physics Letters, 38, 3, (030301), (2021).https://doi.org/10.1088/0256-307X/38/3/030301
    Crossref
  7. Floquet second-order topological insulators in non-Hermitian systems, Physical Review B, 103, 4, (2021).https://doi.org/10.1103/PhysRevB.103.L041115
    Crossref
  8. Delocalization of topological edge states, Physical Review B, 103, 19, (2021).https://doi.org/10.1103/PhysRevB.103.195414
    Crossref
  9. Controlling the direction of topological transport in a non-Hermitian time-reversal symmetric Floquet ladder, APL Photonics, 6, 1, (010801), (2021).https://doi.org/10.1063/5.0036494
    Crossref
  10. Highlighting photonics: looking into the next decade, eLight, 1, 1, (2021).https://doi.org/10.1186/s43593-021-00002-y
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media