Advertisement

Local drivers of decline matter

Recent studies have reported alarming declines in insect populations, but questions persist about the breadth and pattern of such declines. van Klink et al. compiled data from 166 long-term surveys across 1676 globally distributed sites and confirmed declines in terrestrial insects, albeit at lower rates than some other studies have reported (see the Perspective by Dornelas and Daskalova). However, they found that freshwater insect populations have increased overall, perhaps owing to clean water efforts and climate change. Patterns of variation suggest that local-scale drivers are likely responsible for many changes in population trends, providing hope for directed conservation actions.
Science, this issue p. 417; see also p. 368

Abstract

Recent case studies showing substantial declines of insect abundances have raised alarm, but how widespread such patterns are remains unclear. We compiled data from 166 long-term surveys of insect assemblages across 1676 sites to investigate trends in insect abundances over time. Overall, we found considerable variation in trends even among adjacent sites but an average decline of terrestrial insect abundance by ~9% per decade and an increase of freshwater insect abundance by ~11% per decade. Both patterns were largely driven by strong trends in North America and some European regions. We found some associations with potential drivers (e.g., land-use drivers), and trends in protected areas tended to be weaker. Our findings provide a more nuanced view of spatiotemporal patterns of insect abundance trends than previously suggested.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S7
Tables S1 to S3
External Data S1 and S2
References (37206)

Resources

File (aax9931-vanklink-sm.pdf)

References and Notes

1
A. D. Chapman, Numbers of Living Species in Australia and the World (Toowoomba, ed. 2, 2009).
2
N. E. Stork, How many species of insects and other terrestrial arthropods are there on earth? Annu. Rev. Entomol. 63, 31–45 (2018).
3
C. W. Sabrosky, How many insects are there? Syst. Zool. 2, 31–36 (1953).
4
E. O. Wilson, The little things that run the world (the importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).
5
J. A. Thomas, M. G. Telfer, D. B. Roy, C. D. Preston, J. J. D. Greenwood, J. Asher, R. Fox, R. T. Clarke, J. H. Lawton, Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881 (2004).
6
M. L. Forister, J. P. Jahner, K. L. Casner, J. S. Wilson, A. M. Shapiro, The race is not to the swift: Long-term data reveal pervasive declines in California’s low-elevation butterfly fauna. Ecology 92, 2222–2235 (2011).
7
A. Valtonen, A. Hirka, L. Szőcs, M. P. Ayres, H. Roininen, G. Csóka, Long-term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 86, 730–738 (2017).
8
R. Dirzo, H. S. Young, M. Galetti, G. Ceballos, N. J. B. Isaac, B. Collen, Defaunation in the Anthropocene. Science 345, 401–406 (2014).
9
S. Schuch, K. Wesche, M. Schaefer, Long-term decline in the abundance of leafhoppers and planthoppers (Auchenorrhyncha) in Central European protected dry grasslands. Biol. Conserv. 149, 75–83 (2012).
10
C. A. Hallmann, M. Sorg, E. Jongejans, H. Siepel, N. Hofland, H. Schwan, W. Stenmans, A. Müller, H. Sumser, T. Hörren, D. Goulson, H. de Kroon, More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12, e0185809 (2017).
11
B. C. Lister, A. Garcia, Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. U.S.A. 115, E10397–E10406 (2018).
12
G. Vogel, Where have all the insects gone? Science 356, 576–579 (2017).
13
B. Jarvis, The insect apocalypse is here: What does it mean for the rest of life on Earth? The New York Times Magazine, 27 November 2018, pp. 41–48.
14
See the supplementary materials.
15
B. Lehner, P. Döll, Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).
16
G. H. Allen, T. Pavelsky, Global extent of rivers and streams. Science 361, 585–588 (2018).
17
A. J. van Strien, A. W. G. Meyling, J. E. Herder, H. Hollander, V. J. Kalkman, M. J. M. Poot, S. Turnhout, B. van der Hoorn, W. T. F. H. van Strien-van Liempt, C. A. M. van Swaay, C. A. M. van Turnhout, R. J. T. Verweij, N. J. Oerlemans, Modest recovery of biodiversity in a western European country: The Living Planet Index for the Netherlands. Biol. Conserv. 200, 44–50 (2016).
18
I. Rochlin, A. Faraji, D. V. Ninivaggi, C. M. Barker, A. M. Kilpatrick, Anthropogenic impacts on mosquito populations in North America over the past century. Nat. Commun. 7, 13604 (2016).
19
C. L. Outhwaite, R. D. Gregory, R. E. Chandler, B. Collen, N. J. B. Isaac, Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020).
20
D. A. Keiser, J. S. Shapiro, Consequences of the Clean Water Act and the demand for water quality. Q. J. Econ. 134, 349–396 (2019).
21
H. F. V. Braaten, S. Åkerblom, K. K. Kahilainen, M. Rask, J. Vuorenmaa, J. Mannio, T. Malinen, E. Lydersen, A. E. Poste, P.-A. Amundsen, N. Kashulin, T. Kashulina, P. Terentyev, G. Christensen, H. A. de Wit, Improved environmental status: 50 years of declining fish mercury levels in boreal and subarctic Fennoscandia. Environ. Sci. Technol. 53, 1834–1843 (2019).
22
F. Bouraoui, B. Grizzetti, Long term change of nutrient concentrations of rivers discharging in European seas. Sci. Total Environ. 409, 4899–4916 (2011).
23
P. Bigus, M. Tobiszewski, J. Namieśnik, Historical records of organic pollutants in sediment cores. Mar. Pollut. Bull. 78, 26–42 (2014).
24
V. Lencioni, Glacial influence and stream macroinvertebrate biodiversity under climate change: Lessons from the Southern Alps. Sci. Total Environ. 622-623, 563–575 (2018).
25
Y. Cai, Y. Lu, Z. Gong, Changes in macrozoobenthic assemblages in a shallow subtropical lake (Lake Taihu, China): 1987–1988 vs. 2007. J. Freshwat. Ecol. 30, 157–168 (2015).
26
K. Slavik, B. J. Peterson, L. A. Deegan, W. B. Bowden, A. E. Hershey, J. E. Hobbie, Long-term responses of the Kuparuk river ecosystem to phosphorus fertilization. Ecology 85, 939–954 (2004).
27
R. D. Robarts, A. V. Zhulidov, D. F. Pavlov, The state of knowledge about wetlands and their future under aspects of global climate change: The situation in Russia. Aquat. Sci. 75, 27–38 (2013).
28
L. A. Henry, V. Douhovnikoff, Environmental Issues in Russia. Annu. Rev. Environ. Resour. 33, 437–460 (2008).
29
J. C. Habel, M. J. Samways, T. Schmitt, Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).
30
K. Perris, Ecology of Urban Environments (Wiley-Blackwell, 2016).
31
UNEP-WCMC, IUCN, NGS, Protected Planet Report 2018 (2018); https://livereport.protectedplanet.net/.
32
C. A. Hallmann, R. P. B. Foppen, C. A. M. van Turnhout, H. de Kroon, E. Jongejans, Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511, 341–343 (2014).
33
K. V. Rosenberg, A. M. Dokter, P. J. Blancher, J. R. Sauer, A. C. Smith, P. A. Smith, J. C. Stanton, A. Panjabi, L. Helft, M. Parr, P. P. Marra, Decline of the North American avifauna. Science 366, 120–124 (2019).
34
D. E. Bowler, H. Heldbjerg, A. D. Fox, M. de Jong, K. Böhning-Gaese, Long-term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 33, 1120–1130 (2019).
35
R. van Klink, D. E. Bowler, Code for: Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances, Zenodo (2020); https://doi.org/10.5281/zenodo.3691682.
36
R. van Klink, D. E. Bowler, J. M. Chase, O. Comay, M. M. Driessen, S. K. M. Ernest, A. Gentile, F. Gilbert, K. B. Gongalky, G. Pe’er, I. Pe’er, V. H. Resh, A. B. Swengel, S. R. Swengel, T. J. Valone, R. Vermeulen, T. Wepprich, J. Wiedmann, A global database of long-term changes in insect assemblages, Knowledge Network for Biocomplexity (KNB) (2020); https://doi.org/10.5063/F11V5C9V.
37
M. Dornelas, L. H. Antão, F. Moyes, A. E. Bates, A. E. Magurran, D. Adam, A. A. Akhmetzhanova, W. Appeltans, J. M. Arcos, H. Arnold, N. Ayyappan, G. Badihi, A. H. Baird, M. Barbosa, T. E. Barreto, C. Bässler, A. Bellgrove, J. Belmaker, L. Benedetti-Cecchi, B. J. Bett, A. D. Bjorkman, M. Błażewicz, S. A. Blowes, C. P. Bloch, T. C. Bonebrake, S. Boyd, M. Bradford, A. J. Brooks, J. H. Brown, H. Bruelheide, P. Budy, F. Carvalho, E. Castañeda-Moya, C. A. Chen, J. F. Chamblee, T. J. Chase, L. Siegwart Collier, S. K. Collinge, R. Condit, E. J. Cooper, J. H. C. Cornelissen, U. Cotano, S. Kyle Crow, G. Damasceno, C. H. Davies, R. A. Davis, F. P. Day, S. Degraer, T. S. Doherty, T. E. Dunn, G. Durigan, J. E. Duffy, D. Edelist, G. J. Edgar, R. Elahi, S. C. Elmendorf, A. Enemar, S. K. M. Ernest, R. Escribano, M. Estiarte, B. S. Evans, T. Y. Fan, F. Turini Farah, L. Loureiro Fernandes, F. Z. Farneda, A. Fidelis, R. Fitt, A. M. Fosaa, G. A. Daher Correa Franco, G. E. Frank, W. R. Fraser, H. García, R. Cazzolla Gatti, O. Givan, E. Gorgone-Barbosa, W. A. Gould, C. Gries, G. D. Grossman, J. R. Gutierréz, S. Hale, M. E. Harmon, J. Harte, G. Haskins, D. L. Henshaw, L. Hermanutz, P. Hidalgo, P. Higuchi, A. Hoey, G. Van Hoey, A. Hofgaard, K. Holeck, R. D. Hollister, R. Holmes, M. Hoogenboom, C. H. Hsieh, S. P. Hubbell, F. Huettmann, C. L. Huffard, A. H. Hurlbert, N. Macedo Ivanauskas, D. Janík, U. Jandt, A. Jażdżewska, T. Johannessen, J. Johnstone, J. Jones, F. A. M. Jones, J. Kang, T. Kartawijaya, E. C. Keeley, D. A. Kelt, R. Kinnear, K. Klanderud, H. Knutsen, C. C. Koenig, A. R. Kortz, K. Král, L. A. Kuhnz, C.-Y. Kuo, D. J. Kushner, C. Laguionie-Marchais, L. T. Lancaster, C. Min Lee, J. S. Lefcheck, E. Lévesque, D. Lightfoot, F. Lloret, J. D. Lloyd, A. López-Baucells, M. Louzao, J. S. Madin, B. Magnússon, S. Malamud, I. Matthews, K. P. McFarland, B. McGill, D. McKnight, W. O. McLarney, J. Meador, P. L. Meserve, D. J. Metcalfe, C. F. J. Meyer, A. Michelsen, N. Milchakova, T. Moens, E. Moland, J. Moore, C. Mathias Moreira, J. Müller, G. Murphy, I. H. Myers-Smith, R. W. Myster, A. Naumov, F. Neat, J. A. Nelson, M. Paul Nelson, S. F. Newton, N. Norden, J. C. Oliver, E. M. Olsen, V. G. Onipchenko, K. Pabis, R. J. Pabst, A. Paquette, S. Pardede, D. M. Paterson, R. Pélissier, J. Peñuelas, A. Pérez-Matus, O. Pizarro, F. Pomati, E. Post, H. H. T. Prins, J. C. Priscu, P. Provoost, K. L. Prudic, E. Pulliainen, B. R. Ramesh, O. Mendivil Ramos, A. Rassweiler, J. E. Rebelo, D. C. Reed, P. B. Reich, S. M. Remillard, A. J. Richardson, J. P. Richardson, I. van Rijn, R. Rocha, V. H. Rivera-Monroy, C. Rixen, K. P. Robinson, R. Ribeiro Rodrigues, D. de Cerqueira Rossa-Feres, L. Rudstam, H. Ruhl, C. S. Ruz, E. M. Sampaio, N. Rybicki, A. Rypel, S. Sal, B. Salgado, F. A. M. Santos, A. P. Savassi-Coutinho, S. Scanga, J. Schmidt, R. Schooley, F. Setiawan, K.-T. Shao, G. R. Shaver, S. Sherman, T. W. Sherry, J. Siciński, C. Sievers, A. C. da Silva, F. Rodrigues da Silva, F. L. Silveira, J. Slingsby, T. Smart, S. J. Snell, N. A. Soudzilovskaia, G. B. G. Souza, F. Maluf Souza, V. Castro Souza, C. D. Stallings, R. Stanforth, E. H. Stanley, J. Mauro Sterza, M. Stevens, R. Stuart-Smith, Y. Rondon Suarez, S. Supp, J. Yoshio Tamashiro, S. Tarigan, G. P. Thiede, S. Thorn, A. Tolvanen, M. Teresa Zugliani Toniato, Ø. Totland, R. R. Twilley, G. Vaitkus, N. Valdivia, M. I. Vallejo, T. J. Valone, C. Van Colen, J. Vanaverbeke, F. Venturoli, H. M. Verheye, M. Vianna, R. P. Vieira, T. Vrška, C. Quang Vu, L. Van Vu, R. B. Waide, C. Waldock, D. Watts, S. Webb, T. Wesołowski, E. P. White, C. E. Widdicombe, D. Wilgers, R. Williams, S. B. Williams, M. Williamson, M. R. Willig, T. J. Willis, S. Wipf, K. D. Woods, E. J. Woehler, K. Zawada, M. L. Zettler, T. Hickler, BioTIME: A database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).
38
NERC Centre for Population Biology Imperial College, Global population dynamics database, Version 2 (2010); https://github.com/ropensci/rgpdd.
39
G. I. Giraldo-Calderón, S. J. Emrich, R. M. MacCallum, G. Maslen, E. Dialynas, P. Topalis, N. Ho, S. Gesing, the VectorBase Consortium, G. Madey, F. H. Collins, D. Lawson, VectorBase: An updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. Nucleic Acids Res. 43, D707–D713 (2015).
40
D. M. Olson, E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. N. Powell, E. C. Underwood, J. A. D’amico, I. Itoua, H. E. Strand, J. C. Morrison, C. J. Loucks, T. F. Allnutt, T. H. Ricketts, Y. Kura, J. F. Lamoreux, W. W. Wettengel, P. Hedao, K. R. Kassem, Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933–938 (2001).
41
United Nations Environment Programme, International Union for Conservation of Nature (IUCN), World Database on Protected Areas (WDPA): December 2018 release (2018); https://www.protectedplanet.net/c/world-database-on-protected-areas.
42
G. Hurtt, L. Chini, R. Sahajpal, S. Frolking, Harmonization of global land-use change and management for the period 850-2100, Land-Use Harmonization2 dataset (2018); http://luh.umd.edu.
43
ESA, Land Cover CCI Product User Guide Version 2.0 (2017); http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf.
44
I. Harris, P. D. Jones, T. J. Osborn, D. H. Lister, Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
45
D. N. Karger, O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. E. Zimmermann, H. P. Linder, M. Kessler, Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
46
H. Rue, S. Martino, N. Chopin, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Series B Stat. Methodol. 71, 319–392 (2009).
47
R Core Team, R: A language and environment for statistical computing, version 3.5.2 (R Foundation for Statistical Computing, 2019); https:www.R-project.org.
48
H. Rue, A. Riebler, S. H. Sørbye, J. B. Illian, D. P. Simpson, F. K. Lindgren, Bayesian Computing with INLA: A Review. Annu. Rev. Stat. Appl. 4, 395–421 (2017).
49
A. F. Zuur, E. N. Ieno, A. A. Saveliev, Beginner’s Guide to Spatial, Temporal, and Spatial-Temporal Ecological Data Analysis with R-INLA (Highland Statistics, 2017).
50
X. Wang, Y. Y. Ryan, J. J. Faraway, Bayesian Regression Modeling with INLA (Chapman and Hall/CRC, 2018).
51
D. P. Simpson, H. Rue, A. Riebler, T. Martins, S. H. Sørbye, Penalising model component complexity: A principled, practical approach to constructing priors. Stat. Sci. 32, 1–28 (2017).
52
P. F. Thomsen, P. S. Jørgensen, H. H. Bruun, J. Pedersen, T. Riis-nielsen, K. Jonko, I. Słowińska, C. Rahbek, O. Karsholt, Data from: Resource specialists lead local insect community turnover associated with temperature: Analysis of an 18-year full-seasonal record of moths and beetles, Dryad (2016); .
53
D. A. Landis, Insect population dynamics on the main cropping system experiment at the Kellogg Biological Station, Hickory Corners, MI (1989 to 2017), Version 26, Environmental Data Initiative (2018); .
54
A. Joern, CGR02 sweep sampling of grasshoppers on Konza Prairie LTER watersheds (1982-present), Environmental Data Initiative (2016); .
55
J. M. H. Knops, D. G. Tilman, Core old field grasshopper sampling, Environmental Data Initiative (2006); .
56
R. Wagner, J. Marxsen, P. Zwick, E. J. Cox, Central European Stream Ecosystems: The Long Term Study of the Breitenbach (Wiley, ed. 1, 2011); http://hdl.handle.net/11858/00-001M-0000-0011-F2B5-2.
57
S. Rennie, J. Adamson, R. Anderson, C. Andrews, J. Bater, N. Bayfield, K. Beaton, D. Beaumont, S. Benham, V. Bowmaker, C. Britt, R. Brooker, D. Brooks, J. Brunt, G. Common, R. Cooper, S. Corbett, N. Critchley, P. Dennis, J. Dick, B. Dodd, N. Dodd, N. Donovan, J. Easter, M. Flexen, A. Gardiner, D. Hamilton, P. Hargreaves, M. Hatton-Ellis, M. Howe, J. Kahl, M. Lane, S. Langan, D. Lloyd, B. McCarney, Y. McElarney, C. McKenna, S. McMillan, F. Milne, L. Milne, M. Morecroft, M. Murphy, A. Nelson, H. Nicholson, D. Pallett, D. Parry, I. Pearce, G. Pozsgai, A. Riley, R. Rose, S. Schafer, T. Scott, L. Sherrin, C. Shortall, R. Smith, P. Smith, R. Tait, C. Taylor, M. Taylor, M. Thurlow, A. Turner, K. Tyson, H. Watson, M. Whittaker, I. Woiwod, C. Wood, UK Environmental Change Network (ECN) Moth Data: 1992-2015, NERC Environmental Information Data Centre (2018); .
58
D. E. Bowler, C. Hof, P. Haase, I. Kröncke, O. Schweiger, R. Adrian, L. Baert, H.-G. Bauer, T. Blick, R. W. Brooker, W. Dekoninck, S. Domisch, R. Eckmann, F. Hendrickx, T. Hickler, S. Klotz, A. Kraberg, I. Kühn, S. Matesanz, A. Meschede, H. Neumann, R. O’Hara, D. J. Russell, A. F. Sell, M. Sonnewald, S. Stoll, A. Sundermann, O. Tackenberg, M. Türkay, F. Valladares, K. van Herk, R. van Klink, R. Vermeulen, K. Voigtländer, R. Wagner, E. Welk, M. Wiemers, K. H. Wiltshire, K. Böhning-Gaese, Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 67 (2017).
59
R. van Klink, J. Lepš, R. Vermeulen, F. de Bello, Functional differences stabilize beetle communities by weakening interspecific temporal synchrony. Ecology 100, e02748 (2019).
60
A. M. Ellison, Ant assemblages in hemlock removal experiment at Harvard Forest since 2003, Harvard Forest Data Archive (2017); .
61
S. Rennie, J. Adamson, R. Anderson, C. Andrews, J. Bater, N. Bayfield, K. Beaton, D. Beaumont, S. Benham, V. Bowmaker, C. Britt, R. Brooker, D. Brooks, J. Brunt, G. Common, R. Cooper, S. Corbett, N. Critchley, P. Dennis, J. Dick, B. Dodd, N. Dodd, N. Donovan, J. Easter, M. Flexen, A. Gardiner, D. Hamilton, P. Hargreaves, M. Hatton-Ellis, M. Howe, J. Kahl, M. Lane, S. Langan, D. Lloyd, B. McCarney, Y. McElarney, C. McKenna, S. McMillan, F. Milne, L. Milne, M. Morecroft, M. Murphy, A. Nelson, H. Nicholson, D. Pallett, D. Parry, I. Pearce, G. Pozsgai, R. Rose, S. Schafer, T. Scott, L. Sherrin, C. Shortall, R. Smith, P. Smith, R. Tait, C. Taylor, M. Taylor, M. Thurlow, A. Turner, K. Tyson, H. Watson, M. Whittaker, C. Wood, C. Tilbury, Environmental Change Network (ECN) butterfly data: 1993-2015, NERC Environmental Information Data Centre (2018); .
62
S. Rennie, J. Adamson, R. Anderson, C. Andrews, J. Bater, N. Bayfield, K. Beaton, D. Beaumont, S. Benham, V. Bowmaker, C. Britt, R. Brooker, D. Brooks, J. Brunt, G. Common, R. Cooper, S. Corbett, N. Critchley, P. Dennis, J. Dick, B. Dodd, N. Dodd, N. Donovan, J. Easter, M. Flexen, A. Gardiner, D. Hamilton, P. Hargreaves, M. Hatton-Ellis, M. Howe, J. Kahl, M. Lane, S. Langan, D. Lloyd, Y. McElarney, C. McKenna, S. McMillan, F. Milne, L. Milne, M. Morecroft, M. Murphy, A. Nelson, H. Nicholson, D. Pallett, D. Parry, I. Pearce, G. Pozsgai, R. Rose, S. Schafer, T. Scott, L. Sherrin, C. Shortall, R. Smith, P. Smith, R. Tait, C. Taylor, M. Taylor, M. Thurlow, A. Turner, K. Tyson, H. Watson, M. Whittaker, C. Wood, UK Environmental Change Network (ECN) spittle bug data: 1993-2015, NERC Environmental Information Data Centre (2018); .
63
S. Rennie, J. Adamson, R. Anderson, C. Andrews, J. Bater, N. Bayfield, K. Beaton, D. Beaumont, S. Benham, V. Bowmaker, C. Britt, R. Brooker, D. Brooks, J. Brunt, G. Common, R. Cooper, S. Corbett, N. Critchley, P. Dennis, J. Dick, B. Dodd, N. Dodd, N. Donovan, J. Easter, M. Flexen, A. Gardiner, D. Hamilton, P. Hargreaves, M. Hatton-Ellis, M. Howe, J. Kahl, M. Lane, S. Langan, D. Lloyd, Y. McElarney, C. McKenna, S. McMillan, F. Milne, L. Milne, M. Morecroft, M. Murphy, A. Nelson, H. Nicholson, D. Pallett, D. Parry, I. Pearce, G. Pozsgai, R. Rose, S. Schafer, T. Scott, L. Sherrin, C. Shortall, R. Smith, P. Smith, R. Tait, C. Taylor, M. Taylor, M. Thurlow, A. Turner, K. Tyson, H. Watson, M. Whittaker, C. Wood, UK Environmental Change Network (ECN) carabid beetle data: 1992-2015, NERC Environmental Information Data Centre (2018); .
64
H. Wolda, Trends in abundance of tropical forest insects. Oecologia 89, 47–52 (1992).
65
H. Wolda, J. Marek, K. Spitzer, I. Novak, Diversity and variability of Lepidoptera populations in urban Brno, Czech Republic. Eur. J. Entomol. 91, 213–226 (1994).
66
D. Lightfoot, Long-term core site grasshopper dynamics for the Sevilleta National Wildlife Refuge, New Mexico (1992-2013), Environmental Data Initiative (2010); .
67
J. Meijer, A. Barendregt, Forty years of undisturbed change in the ground dwelling fauna in the Lauwersmeer, a reclaimed tidal estuary of the Dutch Waddensea. Entomol. Ber. (Amst.) 78, 122–151 (2018).
68
C. Hassall, J. Owen, F. Gilbert, Phenological shifts in hoverflies (Diptera: Syrphidae): linking measurement and mechanism. Ecography 40, 853–863 (2017).
69
A. Honek, Z. Martinkova, P. Kindlmann, O. M. C. C. Ameixa, A. F. G. Dixon, Long-term trends in the composition of aphidophagous coccinellid communities in Central Europe. Insect Conserv. Divers. 7, 55–63 (2014).
70
G. Belovsky, Grasshopper density, National Bison Range LTREB Database (2018); https://belovskylab.nd.edu/national-bison-range-ltreb-database/survey-data/grasshopper-data/.
71
D. Lightfoot, Ground arthropod community survey in grassland, shrubland, and woodland at the Sevilleta National Wildlife Refuge, New Mexico (1992-2004), Environmental Data Initiative (2010); .
72
D. Lightfoot, Small Mammal Exclosure Study (SMES) ant data from Chihuahuan desert grassland and shrubland at the Sevilleta National Wildlife Refuge, New Mexico (1995-2005), Environmental Data Initiative (2010); .
73
J. Magnuson, C. S. E. Stanley, North Temperate Lakes LTER: Benthic macroinvertebrates 1981-current, Environmental Data Initiative (2010); .
74
N. Grimm, D. Childers, Long-term monitoring of ground-dwelling arthropods in central Arizona–Phoenix, ongoing since 1998, Environmental Data Initiative (2018); .
75
N. Grimm, S. Fisher, J. Bessler, R. Bills, T. Blaine, A. Boulton, J. Cetin, S. Clinton, T. Colella, A. Corbett, L. Dent, K. Donovan, L. Downs, N. Drake, T. Dudley, J. Edmonds, S. Ford, C. Fredrickson, J. Freeman, J. Gavin, A. Goettl, R. Gómez, D. Greene, K. Grove, B. Harper, J. Henry, S. Holland, B. Holmes, J. Hunter, A. Jackson, J. Jones, C. Kochert, T. Main, M. Mallett, E. Martí, A. Millan, M. Murphy, M. Myers, M. Naegeli, R. Peralta, B. Peterson, C. Peterson, K. Petrone, S. Rector, J. Roach, J. Schade, A. Schrot, J. Seddon, R. Sponseller, E. Stanley, K. Stinchfield, M. Tseng, M. Valett, J. Velasco, J. Welter, D. Wood, J. Zachary, W. Zhu, Sycamore creek macroinvertebrate collections after flooding event, Central Arizona-Phoenix Long-Term Ecological Research Database (2007); https://sustainability.asu.edu/caplter/data/view/knb-lter-cap.375.8/.
76
S. K. M. Ernest, G. M. Yenni, G. Allington, E. K. Bledsoe, E. M. Christensen, R. M. Diaz, K. Geluso, J. R. Goheen, Q. Guo, E. Heske, D. Kelt, J. M. Meiners, J. Munger, C. Restrepo, D. A. Samson, M. R. Schutzenhofer, M. Skupski, S. R. Supp, K. Thibault, S. Taylor, E. White, D. W. Davidson, J. H. Brown, T. J. Valone, Portal ant data, GitHub (2018); https://github.com/weecology/PortalData/tree/master/Ants.
77
T. Schowalter, Canopy Trimming Experiment (CTE) canopy invertebrate responses to disturbance, Environmental Data Initiative (2011); .
78
S. C. Pennings, Long-term mid-marsh grasshopper abundance and species diversity at eight GCE-LTER sampling sites, Environmental Data Initiative (2016); .
79
D. Tilman, P. Reich, J. Knops, D. Wedin, Biodiversity II: Effects of plant biodiversity on population and ecosystem processes. Experiment 120: Main plots all arthropod insect sweepnet sampling 1996-2006, Environmental Data Initiative (2006), .
80
K. J. K. Gandhi, M. E. Epstein, J. J. Koehle, F. F. Purrington, A quarter of a century succession of epigaeic beetle assemblages in remnant habitats in an urbanized matrix (Coleoptera, Carabidae). ZooKeys 147, 667–689 (2011).
81
R. Pizzolotto, M. Gobbi, P. Brandmayr, Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009). Ecol. Evol. 4, 1284–1294 (2014).
82
S. H. Shieh, P. S. Yang, Community structure and functional organization of aquatic insects in an agricultural mountain stream of Taiwan: 1985-1986 and 1995-1996. Zool. Stud. 39, 191–202 (2000).
83
D. W. Roubik, Ups and downs in pollinator populations: When is there a decline? Ecol. Soc. 5, art2 (2001).
84
V. Grøtan, R. Lande, I. A. Chacon, P. J. Devries, Seasonal cycles of diversity and similarity in a Central American rainforest butterfly community. Ecography 37, 509–516 (2014).
85
V. Grøtan, R. Lande, S. Engen, B. E. Saether, P. J. DeVries, Seasonal cycles of species diversity and similarity in a tropical butterfly community. J. Anim. Ecol. 81, 714–723 (2012).
86
J. Souza da Silva, E. Faria Albertoni, C. Palma-Silva, Temporal variation of phytophilous Chironomidae over a 11-year period in a shallow Neotropical lake in southern Brazil. Hydrobiologia 742, 129–140 (2015).
87
P. L. Meserve, H. Vásquez, D. A. Kelt, J. R. Gutiérrez, W. B. Milstead, Patterns in arthropod abundance and biomass in the semiarid thorn scrub of Bosque Fray Jorge National Park, north-central Chile: A preliminary assessment. J. Arid Environ. 126, 68–75 (2016).
88
E. White, The changing abundance of moths in a tussock grassland, 1962-1989, and 50- to 70-year trends. N. Z. J. Ecol. 15, 5–22 (1991.
89
I. Quintero, T. Roslin, Rapid recovery of dung beetle communities following habitat fragmentation in central Amazonia. Ecology 86, 3303–3311 (2005).
90
P. R. Langlands, K. E. C. Brennan, D. J. Pearson, Spiders, spinifex, rainfall and fire: Long-term changes in an arid spider assemblage. J. Arid Environ. 67, 36–59 (2006).
91
L. A. Bêche, V. H. Resh, Short-term climatic trends affect the temporal variability of macroinvertebrates in California ‘Mediterranean’ streams. Freshw. Biol. 52, 2317–2339 (2007).
92
V. H. Resh, Long-term data, The Resh Lab (2018); https://nature.berkeley.edu/reshlab/longtermdata.htm.
93
L. Rybalov, I. Kamayev, Comparative analysis and long-term dynamics of soil macrofauna in forest-tundra ecotone of the Khibiny mountains. Russ. Entomol. J. 21, 179–183 (2012).
94
L. Kočíková, A. Čanády, L. Panigaj, Change in a butterfly community on a gradually overgrowing site. Russ. J. Ecol. 45, 391–398 (2014).
95
S. M. Shafigullina, The role of floods in the long-term dynamics of geobiont and chortobiont communities on islands of the Kuibyshev Reservoir. Russ. J. Ecol. 40, 218–226 (2009).
96
A. Valtonen, F. Molleman, C. A. Chapman, J. R. Carey, M. P. Ayres, H. Roininen, Tropical phenology: Bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere 4, 1–28 (2013).
97
G. Crosa, L. Yaméogo, D. Calamari, F. Kondé, K. Nabé, Effects of larvicide treatment on invertebrate communities of Guinean rivers, West Africa. Hydrobiologia 458, 151–158 (2001).
98
E. Daghighi, H. Koehler, R. Kesel, J. Filser, Long-term succession of Collembola communities in relation to climate change and vegetation. Pedobiologia (Jena) 64, 25–38 (2017).
99
L. Gallé, Climate change impoverishes and homogenizes ants’ community structure: A long term study. Community Ecol. 18, 128–136 (2017).
100
J. Hodecek, T. Kuras, J. Sipos, A. Dolny, Post-industrial areas as successional habitats: Long-term changes of functional diversity in beetle communities. Basic Appl. Ecol. 16, 629–640 (2015).
101
A. A. Ananin, T. L. Ananina, Long-term dynamics of birds and ground beetles population density in catena of Barguzinskiy Ridge (Northern Pribaikalye) [in Russian]. Izv. Samar. Nauchnogo Cent. Ross. Akad. Nauk (Proceedings Samara Res. Branch Russ. Acad. Sci. 1, 1041–1044 (2011.
102
M. N. Tsurikov, Long-term dynamics of the species composition of herpetobiont and hortobiont beetles (Coleoptera) in the Galichya Gora Nature Reserve. Entomol. Rev. 96, 191–198 (2016).
103
A. B. Babenko, “Collembola of the Western Taimyr:” Forty years later. Entomol. Rev. 93, 737–754 (2013).
104
V. A. Fedyunin, On population dynamics of Ichneumon flies in the Visim Reserve. Russ. J. Ecol. 39, 225–228 (2008).
105
Aarhus University, Greenland ecosystem monitoring database (2018); https://data.g-e-m.dk/.
106
P. Martikainen, L. Kaila, Sampling saproxylic beetles: Lessons from a 10-year monitoring study. Biol. Conserv. 120, 171–181 (2004).
107
V. A. Nemkov, E. V. Sapiga, Impact of fires on the fauna of terrestrial arthropods in protected steppe ecosystems. Russ. J. Ecol. 41, 173–179 (2010).
108
E. D. Korobov, The influence of windfall disturbances on the structure and dynamics of ground beetle populations (Coleoptera, Carabidae) in the spruce forests of the Central Forest Nature Reserve. Russ. J. Ecol. 46, 595–599 (2015).
109
K.-L. Huttunen, H. Mykrä, J. Oksanen, A. Astorga, R. Paavola, T. Muotka, Habitat connectivity and in-stream vegetation control temporal variability of benthic invertebrate communities. Sci. Rep. 7, 1448 (2017).
110
J. Karg, K. Kujawa, C. Manhart, H. Marschalek, K. R. Neugebauer, J. Sachteleben, Restoration of subalpine species-rich grasslands: Short-term vs long-term changes in the density and diversity of above-ground insects. Pol. J. Ecol. 63, 142–158 (2015).
111
M. Steinwandter, B. C. Schlick-Steiner, G. U. H. Seeber, F. M. Steiner, J. Seeber, Effects of Alpine land-use changes: Soil macrofauna community revisited. Ecol. Evol. 7, 5389–5399 (2017).
112
H. van Dam, Evaluatie basismeetnet waterkwaliteit Hollands Noorderkwartier: Trendanalyse hydrobiology, temperatuur en waterchemie 1982–2007 (Edam, 2009).
113
T.-S. Kwon, Y. S. Kim, S. W. Lee, Y.-S. Park, Changes of soil arthropod communities in temperate forests over 10 years (1998–2007. J. Asia Pac. Entomol. 19, 181–189 (2016).
114
A. Gardarsson, Á. Einarsson, G. M. Gíslason, T. Hrafnsdóttir, H. R. Ingvason, E. Jónsson, J. S. Ólafsson, Population fluctuations of chironomid and simuliid Diptera at Myvatn in 1977–1996. Aquat. Ecol. 38, 209–217 (2004).
115
K. M. Brunk, M. R. Vinson, D. H. Ogle, L. M. Evrard, Burrowing mayfly populations in Chequamegon Bay, Wisconsin: 2002 and 2012. J. Freshwat. Ecol. 29, 337–344 (2014).
116
M. Ayres, R. Holmes, Long-term trends in abundance of lepidoptera larvae at Hubbard Brook Experimental Forest and three additional northern hardwood forest sites, 1986-1997, Hubbard Brook Data Catalog (2018); https://portal.lternet.edu/nis/mapbrowse?scope=knb-lter-hbr&identifier=82.
117
R. J. Stout, M. P. Rondinelli, Stream-dwelling insects and extremely low frequency electromagnetic fields: A ten-year study. Hydrobiologia 302, 197–213 (1995).
118
P. H. Crowley, D. M. Johnson, Variability and stability of a dragonfly assemblage. Oecologia 90, 260–269 (1992).
119
L. Bisevac, J. D. Majer, Comparative study of ant communities of rehabilitated mineral sand mines and Heathland, Western Australia. Restor. Ecol. 7, 117–126 (1999).
120
R. L. Johnson, G. L. Harp, Spatio-temporal changes of benthic macroinvertebrates in a cold Arkansas tailwater. Hydrobiologia 537, 15–24 (2005).
121
J. G. Smith, C. C. Brandt, S. W. Christensen, Long-term benthic macroinvertebrate community monitoring to assess pollution abatement effectiveness. Environ. Manage. 47, 1077–1095 (2011).
122
W. H. Clements, N. K. M. Vieira, S. E. Church, Quantifying restoration success and recovery in a metal-polluted stream: A 17-year assessment of physicochemical and biological responses. J. Appl. Ecol. 47, 899–910 (2010).
123
J. M. McCarthy, C. L. Hein, J. D. Olden, M. J. Vander Zanden, Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshw. Biol. 51, 224–235 (2006).
124
J. W. Grubaugh, J. B. Wallace, Functional structure and production of the benthic community in a Piedmont river: 1956-1957 and 1991-1992. Limnol. Oceanogr. 40, 490–501 (1995).
125
J. W. McCreadie, P. H. Adler, E. C. Masteller, Long-term emergence patterns of black flies (Diptera: Simuliidae) in northwestern Pennsylvania. Hydrobiologia 288, 39–46 (1994).
126
A. T. Rugenski, G. W. Minshall, Climate-moderated responses to wildfire by macroinvertebrates and basal food resources in montane wilderness streams. Ecosphere 5, art25 (2014).
127
P. Bradt, M. Urban, N. Goodman, S. Bissell, I. Spiegel, Stability and resilience in benthic macroinvertebrate assemblages. Hydrobiologia 403, 123–133 (1999).
128
L. Rudstam, Benthic invertebrates in Oneida Lake, New York, 1956 to present, Knowledge Network for Biocomplexity (2018); https://knb.ecoinformatics.org/view/kgordon.4.59.
129
M. R. Vinson, Long-term dynamics of an invertebrate assemblage downstream from a large dam. Ecol. Appl. 11, 711–730 (2001).
130
J. B. Wallace, S. L. Eggert, J. L. Meyer, J. R. Webster, Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. Ecology 96, 1213–1228 (2015).
131
A. Latli, J. P. Descy, C. P. Mondy, M. Floury, L. Viroux, W. Otjacques, J. Marescaux, E. Depiereux, M. Ovidio, P. Usseglio-Polatera, P. Kestemont, Long-term trends in trait structure of riverine communities facing predation risk increase and trophic resource decline. Ecol. Appl. 27, 2458–2474 (2017).
132
G. Blandenier, O. T. Bruggisser, L.-F. Bersier, Do spiders respond to global change? A study on the phenology of ballooning spiders in Switzerland. Ecoscience 21, 79–95 (2014).
133
P. D. Johnson, K. M. Brown, C. V. Covell Jr., A Comparison of the Macroinvertebrate Assemblage in Doe Run Creek, Kentucky: 1960 and 1990. J. N. Am. Benthol. Soc. 13, 496–510 (1994).
134
G. W. Minshall, C. T. Robinson, D. E. Lawrence, D. A. Andrews, J. T. Brock, Benthic macroinvertebrate assemblages in five central Idaho (USA) streams over a 10-year period following disturbance by wildfire. Int. J. Wildland Fire 10, 201 (2001).
135
B. J. Hann, M. J. Wishart, S. B. Watson, Long-term trends in benthic invertebrate populations (1929–2013) in Lake Winnipeg. J. Great Lakes Res. 43, 938–952 (2017).
136
J. M. Haynes, T. W. Stewart, G. E. Cook, Benthic Macroinvertebrate Communities in Southwestern Lake Ontario Following Invasion of Dreissena: Continuing Change. J. Great Lakes Res. 25, 828–838 (1999).
137
A. Wright-Stow, National River Water Quality Network Database (macro-invertebrates), Version 1.4 (National Institute of Water and Atmospheric Research, 2018); .
138
T. Grechanichenko, Linear and cyclic long-term trends in the dynamics of ground beetles activity (Carabidae, Coleoptera). Aktual. Probl. Gumanit. i Estestv. Nauk. 4-1, 44–49 (2014).
139
E. B. Fefilova, M. A. Baturina, O. N. Kononova, O. A. Loskutova, L. G. Khokhlova, O. P. Dubovskaya, Long-Term Changes of Aquatic Communities in the Kharbeyskie Lakes. J. Sib. Fed. Univ. Biol. 3, 240–266 (2014).
140
V. Baranovskaya, in Efficiency of the Lakes of the Eastern Part of Bolshezemelskaya Tundra, G. Vinberg, T. Vlasova, Eds. (Nauka, 1976), pp. 90–101.
141
M. A. Baturina, O. N. Kononova, E. B. Fefilova, B. Y. Teteryuk, E. Patova, A. Stenina, I. Sterlyagova, Present state of biota of small Komi Republic reservoirs. J. Sib. Fed. Univ. Biol. 10, 422–445 (2017).
142
M. S. Aleksevnina, E. V. Presnova, ., Changes in the benthocenoses structure if the Votinskoe reservoir during its existence (1964–2014). Vestn. Permsk. Univ. Ser. Biol. 328–332 (2017).
143
A. M. Istomina, Current state of macrobenthos of Kama and Votinsk reservoirs. Vestn. Permsk. Univ. Ser. Biol. 279–287 (2017).
144
S. A. Pavlovsky, Comparative characteristics and long term changes of the macrozoobenthos in major biotopes of lake Syamozero (Southern Karelia). Tr. Karel. Nauchnogo Tsentra RA 140–146 (2014).
145
V. A. Petukhov, N. V. Aladin, I. S. Plotnikov, A. O. Smurov, in Multi-Year Dynamics of Abundance, Density and Biomass of Meyobentos of Lake Krivoe, O. N. Pugachev, A. A. Sukhotin, Eds. (Zoological Institute of Russian Academy of Sciences, 2017), pp. 154–157.
146
M. A. Baturina, O. A. Loskutova, E. B. Fefilova, L. G. Khokhlova, Zoobenthos of lake Bolshoi Kharbei (Bolshezemelskaya Tundra): Modern state and analysis of retrospective data [in Russian]. Izv. Komi Sci. Cent. Ural Branch Russ. Acad. Sci. 4, 21–29 (2012).
147
S. P. Nechvalenko, in Saratov Reservoir Proceedings of the Saratov Department of Gosniorh, A. N. Yakovleva, V. P. Vyushkova, T. K. Nebolsina., Eds. (Privolzhskoe, 1973), pp. 94–103.
148
E. Kurina, T. Zinchenko, T. Popchenko, in Tatishchev Readings: Actual Problems of Science and Practice. Materials of the XIII International Scientific and Practical Conference in 5 Volumes (2016), pp. 81–87.
149
L. V. Golovatyuk, E. V. Abrosimova, Composition, distribution and structural indicators of the donal communities of the fractal river basin of the lower Volga (on the example of the Sok river. Vestn. Tambovskogo Univ. Seriya Estestv. i tekhnicheskie Nauk. 20, 1579–1585 (2015).
150
N. Kuznetsova, Organization of Communities of Soil-Dwelling Collembola. (Prometei, 2005).
151
S. Y. Gryuntal, Organization of Communities of Ground Beetles (Coleoptera; Carabidae) in Forest Biocoenoses of East-European (Russian) Plain. (Gallea-Print, 2008).
152
O. G. Guseva, Rove beetles (Coleoptera, Staphylindae) in agricultural landscape of Leningrad region. Plant Prot. News 94, 39–42 (2017).
153
V. A. Mutin, “The results of 30-year research of hover flies (Diptera, Syrphidae) anthophilous complex of xerophytic willow (Salix Bebberiana) in Silinskiy Park, Komsomolsk-Na-Amure,” in A. I. Kurentsov’s Annual Memorial Readings (Russian Academy of Sciences, 2015), pp. 325–337.
154
L. E. Sasova, thesis, Far-Eastern State University, Vladivostok, Russia (2008).
155
A. S. Shlyakhtenok, Studying the dynamics of the complex of the digging wasps (Hymenoptera, Sphecidae) in the abandoned zone of the Chernobyl Power Station. Ecologiya 5, 391–394 (2007).
156
I.-C. Chen, J. K. Hill, H.-J. Shiu, J. D. Holloway, S. Benedick, V. K. Chey, H. S. Barlow, C. D. Thomas, Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 20, 34–45 (2011).
157
E. G. Krupa, V. N. Tsoy, T. Y. Lopareva, L. P. Ponomareva, A. N. Anureva, N. N. Sadyrbaeva, S. Z. Assylbekova, K. B. Isbekov, Long-term dynamics of hydrobionts in lake Balkhash and its connection with the environmental factors. Vestn. Astrakhan State Tech. Univ. Ser. Fish. Ind., 85–96 (2013).
158
A. S. Shlyakhtenok, Hymenoptera aculeates of raised bogs in Belarus. Zool. Zhurnal 86, 295–306 (2007).
159
E. F. Ploquin, J. M. Herrera, J. R. Obeso, Bumblebee community homogenization after uphill shifts in montane areas of northern Spain. Oecologia 173, 1649–1660 (2013).
160
A. S. Shlyakhtenok, Aculeate Hymenoptera of the family Chrysididae of Byelorussia. Vestn. Zool. 41, 433–438 (2007).
161
M. I. Nitochko, Structure and dynamic of population of ground beetles and tenebrionid beetles (Coleoptera: Carabidae, Tenebrionidae) of sand steppe of Black Sea Biosphere Reserve NAS of Ukraine. Optim. Prot. Ecosyst. 62–73 (2012).
162
S. Szabó, E. Árnyas, B. Tóthmérész, Z. Varga, Long-term light trap study on the macro-moth (lepidoptera: Macroheterocera) fauna of the Aggtelek National Park. Acta Zool. Acad. Sci. Hung. 53, 257–269 (2007).
163
C. Mebane, R. Eakins, B. Fraser, W. Adams, Data from: Recovery of a mining-damaged stream ecosystem, Dryad (2015); .
164
C. A. Mebane, R. J. Eakins, B. G. Fraser, W. J. Adams, Recovery of a mining-damaged stream ecosystem. Elem. Sci. Anthr. 3, 000042 (2015).
165
S. Schuch, J. Bock, B. Krause, K. Wesche, M. Schaefer, Long-term population trends in three grassland insect groups: A comparative analysis of 1951 and 2009. J. Appl. Entomol. 136, 321–331 (2012).
166
S. Schuch, thesis, Georg-August-Universität Göttingen, Göttingen, Germany (2011).
167
A. B. Swengel, S. R. Swengel, Grass-skipper (Hesperiinae) trends in midwestern USA grasslands during 1988–2013. J. Insect Conserv. 19, 279–292 (2015).
168
S. R. Swengel, A. B. Swengel, Assessing abundance patterns of specialized bog butterflies over 12 years in northern Wisconsin USA. J. Insect Conserv. 19, 293–304 (2015).
169
M. M. Driessen, J. B. Kirkpatrick, The implications of succession after fire for the conservation management of moorland invertebrate assemblages. J. Insect Conserv. 21, 15–37 (2017).
170
N. E. Doran, J. Balmer, M. Driessen, R. Bashford, S. Grove, A. M. Richardson, J. Griggs, D. Ziegeler, Moving with the times: Baseline data to gauge future shifts in vegetation and invertebrate altitudinal assemblages due to environmental change. Org. Divers. Evol. 3, 127–149 (2003).
171
G. Pe’er, O. Comay, Data from the Israeli Butterfly Monitoring Scheme (BMS-IL) from 2009-2018, Israeli Lepidopterists Society (2019); available at https://knb.ecoinformatics.org/view/doi:10.5063/F11V5C9V.
172
T. Schowalter, Canopy invertebrate responses to Hurricane Hugo, Environmental Data Initiative (2017); .
173
SLU, Miljödata MVM, Version 1.21.00 (2018); https://miljodata.slu.se/mvm/Default.aspx.
174
G. E. N. Aguila, D G. F. Pujoni, M. M. Marques, L. G. C. Santos, N. M. de Lima Dornelas, K. Andrade, I. M. Monteiro, P. M. Maia-Barbosa, F. A. Rodreigues Barbosa, Benthic macroinvertebrate diversity in the Middle Doce River Basin, Brazil. Data 3, 17 (2018).
175
Sistema de Informação sobre a Biodiversidade Brasileira - SiBBr, Benthic macroinvertebrate diversity in the Middle Doce River Basin, Brazil, Version 1.5, sampling event dataset, Global Biodiversity Information Facility (2019); .
176
G. Hu, K. S. Lim, N. Horvitz, S. J. Clark, D. R. Reynolds, N. Sapir, J. W. Chapman, Mass seasonal bioflows of high-flying insect migrants. Science 354, 1584–1587 (2016).
177
N. J. Aebischer, Assessing pesticide effects on non-target invertebrates using long-term monitoring and time-series modelling. Funct. Ecol. 4, 369–373 (1990).
178
R. C. Shortall, A. Moore, E. Smith, J. M. Hall, P. I. Woiwod, R. Harrington, Long-term changes in the abundance of flying insects. Insect Conserv. Divers. 2, 251–260 (2009).
179
T. G. Benton, D. M. Bryant, L. Cole, H. Q. P. Crick, Linking agricultural practice to insect and bird populations: A historical study over three decades. J. Appl. Ecol. 39, 673–687 (2002).
180
P. M. J. Brown, H. E. Roy, Native ladybird decline caused by the invasive harlequin ladybird Harmonia axyridis: Evidence from a long-term field study. Insect Conserv. Divers. 11, 230–239 (2018).
181
G. Woodward, N. Bonada, H. B. Feeley, P. S. Giller, Resilience of a stream community to extreme climatic events and long-term recovery from a catastrophic flood. Freshw. Biol. 60, 2497–2510 (2015).
182
C. Soulsby, D. Turnbull, S. J. Langan, R. Owen, D. Hirst, Long-term trends in stream chemistry and biology in north-east Scotland: Evidence for recovery. Water Air Soil Pollut. 85, 689–694 (1995).
183
I. Durance, S. J. Ormerod, Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob. Change Biol. 13, 942–957 (2007).
184
National Biodiversity Data Centre, Irish butterfly monitoring scheme: Occurrence dataset, Global Biodiversity Information Facility (2018); .
185
X. Zhang, P. Wu, Y. Liu, Y. Han, X. Zhang, P. Dai, Z. Yu, J. C. Axmacher, Changes in assemblages and diversity patterns of Carabidae (Coleoptera) from 1997 to 2014 in a desalinized, intensively cultivated agricultural landscape in northern China. Coleopt. Bull. 72, 597–611 (2018).
186
W. L. Paul, R. A. Cook, P. J. Suter, K. R. Clarke, M. E. Shackleton, P. J. McInerney, J. H. Hawking, Long-term monitoring of macroinvertebrate communities over 2,300 km of the Murray River reveals ecological signs of salinity mitigation against a backdrop of climate variability. Water Resour. Res. 54, 7004–7028 (2018).
187
D. B. Herbst, R. B. Medhurst, N. J. P. Black, Long-term effects and recovery of streams from acid mine drainage and evaluation of toxic metal threshold ranges for macroinvertebrate community reassembly. Environ. Toxicol. Chem. 37, 2575–2592 (2018).
188
F. G. Blanchet, T. Roslin, M. T. Kimura, T. Huotari, R. Kaartinen, S. Gripenberg, A. J. M. Tack, Related herbivore species show similar temporal dynamics. J. Anim. Ecol. 87, 801–812 (2018).
189
F. Blanchet, T. Roslin, M. Kimura, T. Huotari, R. Kaartinen, S. Gripenberg, A. Tack, Data from: Related herbivore species show similar temporal dynamics, Dryad (2018); .
190
P. E. Gutiérrez-Fonseca, A. Ramírez, C. M. Pringle, Large-scale climatic phenomena drive fluctuations in macroinvertebrate assemblages in lowland tropical streams, Costa Rica: The importance of ENSO events in determining long-term (15y) patterns. PLOS ONE 13, e0191781 (2018).
191
S. P. Shulepina, thesis, Siberian Federal University, Krasnoyarsk, Russia (2010).
192
T. V. Chernenkova, O. V. Butusov, V. V. Sychev, G. G. Konev, R. R. Kabirov, A. M. Stepanov, R. G. Kuperman, G. D. Kataev, The Impact of Metallurgical Production on Forest Ecosystems of the Kola Peninsula (SPb. Publishing House, 1995.
193
A. V. Tanasevitch, L. B. Rybalov, I. O. Kamayev, Dynamics of the soil macrofauna in spruce forests in the zone exposed to technogenic impact of the mining integrated plant “Severonikel”. Лесоведение 6, 63–76 (2009.
194
N. A. Kashulin, D. B. Denisov, S. A. Valkova, O. I. Vandysh, P. M. Terentjev, The modern tendencies of modification of frehs water ecosystems of the Euro-arctic region. Proc. Kola Sci. Cent. Russ. Acad. Sci. 1, 7–54 (2012.
195
A. P. Novoselov, I. I. Studenov, A. K. Koz’min, G. A. Dvoryankin, A. G. Zavisha, M. A. Studenova, A. L. Levitskiy, Species diversity and dynamics of the fish fodder base indicators of the Lacha lake. Part 2. Zoobenthos. Arct. Environ. Res. 17, 233–244 (2017).
196
D. M. Bezmaternykh, K. V. Chernyshkova, K. V. Marusin, Modern condition and long-term dynamics of zoobenthos of lake Chany. Probl. Reg. Ekol. 6, 43–48 (2008).
197
K. Homburg, C. Drees, E. Boutaud, D. Nolte, W. Schuett, P. Zumstein, E. Ruschkowski, T. Assmann, Where have all the beetles gone? Long‐term study reveals carabid species decline in a nature reserve in Northern Germany. Insect Conserv. Divers. 12, 268–277 (2019).
198
E. Cuesta, J. M. Lobo, A comparison of dung beetle assemblages (Coleoptera, Scarabaeoidea) collected 34 years apart in an Iberian mountain locality. J. Insect Conserv. 23, 101–110 (2019).
199
O. Gran, F. Götmark, Long-term experimental management in Swedish mixed oak-rich forests has a positive effect on saproxylic beetles after 10 years. Biodivers. Conserv. 28, 1451–1472 (2019).
200
Y. Guo, S. Lai, J. Zhang, Q. Liu, H. Zhang, Z. Ren, D. Mao, C. Luo, Y. He, H. Wu, G. Li, D. Ren, X. Liu, Z. Chang, Mosquito population dynamics during the construction of Three Gorges Dam in Yangtze River, China. Acta Trop. 182, 251–256 (2018).
201
T. Wepprich, J. R. Adrion, L. Ries, J. Wiedmann, N. M. Haddad, Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLOS ONE 14, e0216270 (2019).
202
Iowa State University, Iowa Mosquito Surveillance Database (2019); https://mosquito.ent.iastate.edu/.
203
E. N. Field, R. E. Tokarz, R. C. Smith, Satellite imaging and long-term mosquito surveillance implicate the influence of rapid urbanization on Culex vector populations. Insects 10, 269 (2019).
204
H. Petersen, E. Jucevica, P. Gjelstrup, Long-term changes in collembolan communities in grazed and non-grazed abandoned arable fields in Denmark. Pedobiologia (Jena) 48, 559–573 (2004).
205
C. A. Hallmann, T. Zeegers, R. Van Klink, R. Vermeulen, P. Wielink, H. Spijkers, J. Van Deijk, W. van Steenis, E. Jongejans, Declining abundance of beetles, moths and caddisflies in the Netherlands. Insect Conserv. Divers. 13, 127–139 (2020).
206
M. D. Mastrandrea, C. B. Field, T. F. Stocker, O. Edenhofer, K. L. Ebi, D. J. Frame, H. Held, E. Kriegler, K. J. Mach, P. R. Matschoss, G.-K. Plattner, G. W. Yohe, F. W. Zwiers, Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (Intergovernmental Panel on Climate Change, 2010).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 368 | Issue 6489
24 April 2020

Submission history

Received: 10 May 2019
Accepted: 3 March 2020
Published in print: 24 April 2020

Permissions

Request permissions for this article.

Acknowledgments

We thank R. Vermeulen (WBBS foundation), S. Swengel, M. Driessen, J. Owen, F. Gilbert, T. Wepprich, A. M. Kilpatrick, Butterfly Monitoring Israel, S. Schuch, and the Smithsonian Institution for making data freely available to us. Data from the Greenland Ecosystem Monitoring Programme were provided by the Department of Bioscience, Aarhus University, Denmark. The ECN data were supplied by the Natural Environment Research Council (UK). We also thank N. Naderi, S. Blowes, P. Keil, A. T. Clark, S. D. Jurburg, and M. Winter for help with data extraction, statistical advice, figure formatting, and commenting on earlier versions of the manuscript. Funding: R.v.K., J.M.C., D.E.B., and A.G. were supported by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and its synthesis center (sDiv), funded by the German Research Foundation (FZT 118). K.B.G. was supported by the Russian Foundation for Basic Research (19-05-00245). Some of the data analyzed here were collected using NSF grants to the LTER Network (NSF06‐20443, 8811906, 9411976, 0080529, 0217774, DEB-0423704, DEB-1633026, DEB-1637685, DEB-1256696, DEB-0832652, DEB-0936498, DEB-1832016, DEB-0620652 DEB-1234162, OCE-9982133, OCE-0620959, OCE-1237140, and OCE-1832178). Author contributions: R.v.K. and J.M.C. conceived the study. R.v.K. and K.B.G. performed the literature search. A.G., D.E.B., and A.B.S. collected data. R.v.K. and D.E.B. analyzed the data. R.v.K. and J.M.C. wrote the first version of the manuscript, and all authors substantially edited the text. Competing interests: The authors declare no competing interests. Data and materials availability: The data frames used for the analyses are available as data S1 and S2 in the supplementary materials, excluding datasets with access licenses that precluded distribution of a derived product. Links to these datasets, and all other publicly available datasets, are provided in table S1. All code for this analysis is available on GitHub (https://github.com/roelvanklink/Final-insect-abundance-changes) and is archived on Zenodo (35). The underlying database, including extended metadata, is available on KNB (36).

Authors

Affiliations

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.
Leipzig University, 04109 Leipzig, Germany.
WBBS Foundation, 9409 TV, Loon, Netherlands.
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.
Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany.
Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig, Germany.
A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia.
M.V. Lomonosov Moscow State University, Moscow 119991, Russia.
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.
Department of Computer Science, Martin Luther University-Halle Wittenberg, 06099 Halle (Saale), Germany.

Funding Information

Notes

*
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. A phylogenomic perspective on the evolutionary history of the stonefly genus Suwallia (Plecoptera: Chloroperlidae) revealed by ultraconserved genomic elements, Molecular Phylogenetics and Evolution, 166, (107320), (2022).https://doi.org/10.1016/j.ympev.2021.107320
    Crossref
  2. Ecological consequences of neonicotinoid mixtures in streams, Science Advances, 8, 15, (2022)./doi/10.1126/sciadv.abj8182
    Abstract
  3. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems, Science, 376, 6590, (2022)./doi/10.1126/science.abh3767
    Abstract
  4. Interactive effects of climate and land use on pollinator diversity differ among taxa and scales, Science Advances, 8, 18, (2022)./doi/10.1126/sciadv.abm9359
    Abstract
  5. Predator–prey interactions of terrestrial invertebrates are determined by predator body size and species identity, Ecology, 103, 5, (2022).https://doi.org/10.1002/ecy.3634
    Crossref
  6. Failures to disagree are essential for environmental science to effectively influence policy development, Ecology Letters, 25, 5, (1075-1093), (2022).https://doi.org/10.1111/ele.13984
    Crossref
  7. Human Impact Induces Shifts in Trophic Composition and Diversity of Consumer Communities in Small Freshwater Ecosystems, Small Water Bodies of the Western Balkans, (389-418), (2022).https://doi.org/10.1007/978-3-030-86478-1_18
    Crossref
  8. Natural and anthropogenic factors and their interactions drive stream community integrity in a North American river basin at a large spatial scale, Science of The Total Environment, 835, (155344), (2022).https://doi.org/10.1016/j.scitotenv.2022.155344
    Crossref
  9. Community dynamics, Insect Ecology, (463-514), (2022).https://doi.org/10.1016/B978-0-323-85673-7.00018-6
    Crossref
  10. Responses to abiotic conditions, Insect Ecology, (29-91), (2022).https://doi.org/10.1016/B978-0-323-85673-7.00015-0
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media