Advertisement

The neural substrate of memory

The ability to form memory is an essential trait that allows learning and the accumulation of knowledge. But what is a memory? There has been a long history of searching for the neuronal substrate that forms memory in the brain, and the emerging view is that ensembles of engram cells explain how memories are formed and retrieved. In a Review, Josselyn and Tonegawa discuss the evidence for engram cells as a substrate of memory, particularly in rodents; what we have learned so far about the features of memory, including memory formation, retrieval over time, and loss; and future directions to understand how memory becomes knowledge.
Science, this issue p. eaaw4325

Structured Abstract

BACKGROUND

The idea that memory is stored as enduring changes in the brain dates back at least to the time of Plato and Aristotle (circa 350 BCE), but its scientific articulation emerged in the 20th century when Richard Semon introduced the term “engram” to describe the neural substrate for storing and recalling memories. Essentially, Semon proposed that an experience activates a population of neurons that undergo persistent chemical and/or physical changes to become an engram. Subsequent reactivation of the engram by cues available at the time of the experience induces memory retrieval. After Karl Lashley failed to find the engram in a rat brain, studies attempting to localize an engram were largely abandoned. Spurred by Donald O. Hebb’s theory that augmented synaptic strength and neuronal connectivity are critical for memory formation, many researchers showed that enhanced synaptic strength was correlated with memory. Nonetheless, the causal relationship between these enduring changes in synaptic connectivity with a specific, behaviorally identifiable memory at the level of the cell ensemble (an engram) awaited further advances in experimental technologies.

ADVANCES

The resurgence in research examining engrams may be linked to two complementary studies that applied intervention strategies to target individual neurons in an engram supporting a specific memory in mice. One study showed that ablating the subset of lateral amygdala neurons allocated to a putative engram disrupted subsequent memory retrieval (loss of function). The second study showed that artificially reactivating a subset of hippocampal dentate gyrus neurons that were active during a fearful experience (and, therefore, part of a putative engram) induced memory retrieval in the absence of external retrieval cues (gain of function). Subsequent findings from many labs used similar strategies to identify engrams in other brain regions supporting different types of memory.
There are several recent advances in engram research. First, eligible neurons within a given brain region were shown to compete for allocation to an engram, and relative neuronal excitability determines the outcome of this competition. Excitability-based competition also guides the organization of multiple engrams in the brain and determines how these engrams interact. Second, research examining the nature of the off-line, enduring changes in engram cells (neurons that are critical components of an engram) found increased synaptic strength and spine density in these neurons as well as preferential connectivity to other downstream engram cells. Therefore, both increased intrinsic excitability and synaptic plasticity work hand in hand to form engrams, and these mechanisms are also implicated in memory consolidation and retrieval processes. Third, it is now possible to artificially manipulate memory encoding and retrieval processes to generate false memories, or even create a memory in mice without any natural sensory experience (implantation of a memory for an experience that did not occur). Fourth, “silent” engrams were discovered in amnesic mice; artificial reactivation of silent engrams induces memory retrieval, whereas natural cues cannot. Endogenous engram silencing may contribute to the change in memory over time (e.g., systems memory consolidation) or in different circumstances (e.g., fear memory extinction). These findings suggest that once formed, an engram may exist in different states (from silent to active) on the basis of their retrievability. Although initial engram studies focused on single brain regions, an emerging concept is that a given memory is supported by an engram complex, composed of functionally connected engram cell ensembles dispersed across multiple brain regions, with each ensemble supporting a component of the overall memory.

OUTLOOK

The ability to identify and manipulate engram cells and brainwide engram complexes has introduced an exciting new era of memory research. The findings from many labs are beginning to define an engram as the basic unit of memory. However, many questions remain. In the short term, it is critical to characterize how information is stored in an engram, including how engram architecture affects memory quality, strength, and precision; how multiple engrams interact; how engrams change over time; and the role of engram silencing in these processes. The long-term goal of engram research is to leverage the fundamental findings from rodent engram studies to understand how information is acquired, stored, and used in humans and facilitate the treatment of human memory, or other information-processing, disorders. The development of low- to noninvasive technology may enable new human therapies based on the growing knowledge of engrams in rodents.
An engram cell alongside a nonengram cell.
Within the hippocampus, dentate gyrus cells were filled with biocytin (white) to examine morphology. Engram cells active during context fear conditioning were engineered to express the red fluorescent protein mCherry, which appears pink owing to overlap with biocytin signals. Axons of the perforant path (green) express the excitatory opsin channelrhodopsin 2 and a fluorescent marker (enhanced yellow fluorescent protein). The upper blade of the dentate gyrus granule cell layer is revealed by the nuclear stain 4′,6-diamidino-2-phenylindole (DAPI, blue).
CREDIT: ADAPTED FROM T. J. RYAN ET AL., SCIENCE 348, 1007 (2015).

Abstract

In 1904, Richard Semon introduced the term “engram” to describe the neural substrate for storing memories. An experience, Semon proposed, activates a subset of cells that undergo off-line, persistent chemical and/or physical changes to become an engram. Subsequent reactivation of this engram induces memory retrieval. Although Semon’s contributions were largely ignored in his lifetime, new technologies that allow researchers to image and manipulate the brain at the level of individual neurons has reinvigorated engram research. We review recent progress in studying engrams, including an evaluation of evidence for the existence of engrams, the importance of intrinsic excitability and synaptic plasticity in engrams, and the lifetime of an engram. Together, these findings are beginning to define an engram as the basic unit of memory.

Get full access to this article

View all available purchase options and get full access to this article.

References and notes

1
Y. Dudai, The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86 (2004). 10.1146/annurev.psych.55.090902.142050
2
D. L. Schacter, Constructive memory: Past and future. Dialogues Clin. Neurosci. 14, 7–18 (2012). 22577300
3
D. L. Schacter, Stranger Behind the Engram: Theories of Memory and the Psychology of Science (Erlbaum Associates, 1982).
4
D. L. Schacter, J. E. Eich, E. Tulving, Richard Semon’s theory of memory. J. Verbal Learn. Verbal Behav. 17, 721–743 (1978). 10.1016/S0022-5371(78)90443-7
5
R. Semon, The Mneme (G. Allen & Unwin, 1921).
6
R. Semon, Die Mneme als erhaltendes Prinzip im Wechsel des organischen Geschehens, W. Engelmann, Ed. (Leipzig, 1904).
7
R. W. Semon, Mnemic Psychology (G. Allen & Unwin, 1923).
8
S. A. Josselyn, S. Köhler, P. W. Frankland, Finding the engram. Nat. Rev. Neurosci. 16, 521–534 (2015). 10.1038/nrn4000
9
S. A. Josselyn, S. Köhler, P. W. Frankland, Heroes of the engram. J. Neurosci. 37, 4647–4657 (2017). 10.1523/JNEUROSCI.0056-17.2017
10
S. Tonegawa, X. Liu, S. Ramirez, R. Redondo, Memory engram cells have come of age. Neuron 87, 918–931 (2015). 10.1016/j.neuron.2015.08.002
11
D. L. Schacter, Forgotten Ideas, Neglected Pioneers: Richard Semon and the Story of Memory (Psychology Press, 2001).
12
K. S. Lashley, in Society of Experimental Biology Symposium, No. 4: Psychological Mechanisms in Animal Behavior, J. F. Danielli, R. Brown, Eds. (Academic Press, 1950), pp. 454–482.
13
K. S. Lashley, Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain (Dover Books on Psychology, vol. T1038, Dover Publications, 1963).
14
K. S. Lashley, Mass action in cerebral function. Science 73, 245–254 (1931). 10.1126/science.73.1888.245
15
D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory (Wiley, 1949).
16
C. J. Shatz, The developing brain. Sci. Am. 267, 60–67 (1992). 10.1038/scientificamerican0992-60
17
D. Marr, Simple memory: A theory for archicortex. Philos. Trans. R. Soc. Lond. Ser. B 262, 23–81 (1971). 10.1098/rstb.1971.0078
18
M. R. Hunsaker, R. P. Kesner, The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory. Neurosci. Biobehav. Rev. 37, 36–58 (2013). 10.1016/j.neubiorev.2012.09.014
19
J. J. Knierim, J. P. Neunuebel, Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiol. Learn. Mem. 129, 38–49 (2016). 10.1016/j.nlm.2015.10.008
20
M. Moscovitch, in Science of Memory: Concepts, H. L. I. Roediger, Y. Dudai, S. M. Fitzpatrick, Eds. (Oxford Univ. Press, 2007), pp. 17–29.
21
S. J. Martin, P. D. Grimwood, R. G. Morris, Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000). 10.1146/annurev.neuro.23.1.649
22
S. J. Martin, R. G. Morris, New life in an old idea: The synaptic plasticity and memory hypothesis revisited. Hippocampus 12, 609–636 (2002). 10.1002/hipo.10107
23
D. Yu, Y. Tan, M. Chakraborty, S. Tomchik, R. L. Davis, Elongator complex is required for long-term olfactory memory formation in Drosophila. Learn. Mem. 25, 183–196 (2018). 10.1101/lm.046557.117
24
D. Owald, J. Felsenberg, C. B. Talbot, G. Das, E. Perisse, W. Huetteroth, S. Waddell, Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron 86, 417–427 (2015). 10.1016/j.neuron.2015.03.025
25
E. Perisse, D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth, S. Waddell, Aversive learning and appetitive motivation toggle feed-forward inhibition in the Drosophila mushroom body. Neuron 90, 1086–1099 (2016). 10.1016/j.neuron.2016.04.034
26
J. Felsenberg, P. F. Jacob, T. Walker, O. Barnstedt, A. J. Edmondson-Stait, M. W. Pleijzier, N. Otto, P. Schlegel, N. Sharifi, E. Perisse, C. S. Smith, J. S. Lauritzen, M. Costa, G. S. X. E. Jefferis, D. D. Bock, S. Waddell, Integration of parallel opposing memories underlies memory extinction. Cell 175, 709–722.e15 (2018). 10.1016/j.cell.2018.08.021
27
T. Miyashita, E. Kikuchi, J. Horiuchi, M. Saitoe, Long-term memory engram cells are established by c-Fos/CREB transcriptional cycling. Cell Rep. 25, 2716–2728.e3 (2018). 10.1016/j.celrep.2018.11.022
28
J. Z. Young, Computation in the learning system of cephalopods. Biol. Bull. 180, 200–208 (1991). 10.2307/1542389
29
J. Z. Young, in Cephalopod Neurobiology: Neuroscience Studies in Squid, Octopus and Cuttlefish, N. J. Abbott, R. Williamson, L. Maddock, Eds. (Oxford Univ. Press, 1995), pp. 431–443.
30
A. Bédécarrats, S. Chen, K. Pearce, D. Cai, D. L. Glanzman, RNA from trained Aplysia can induce an epigenetic engram for long-term sensitization in untrained Aplysia. eNeuro 5, ENEURO.0038-0018.2018 (2018). 10.1523/ENEURO.0038-18.2018
31
T. J. Carew, R. D. Hawkins, T. W. Abrams, E. R. Kandel, A test of Hebb’s postulate at identified synapses which mediate classical conditioning in Aplysia. J. Neurosci. 4, 1217–1224 (1984). 10.1523/JNEUROSCI.04-05-01217.1984
32
R. Menzel, Searching for the memory trace in a mini-brain, the honeybee. Learn. Mem. 8, 53–62 (2001). 10.1101/lm.38801
33
D. L. Alkon, Calcium-mediated reduction of ionic currents: A biophysical memory trace. Science 226, 1037–1045 (1984). 10.1126/science.6093258
34
D. A. Mccormick, D. G. Lavond, G. A. Clark, R. E. Kettner, C. E. Rising, R. F. Thompson, The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bull. Psychon. Soc. 18, 103–105 (1981). 10.3758/BF03333573
35
J. M. Fuster, J. P. Jervey, Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212, 952–955 (1981). 10.1126/science.7233192
36
Y. Miyashita, Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335, 817–820 (1988). 10.1038/335817a0
37
M. E. Greenberg, E. B. Ziff, Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311, 433–438 (1984). 10.1038/311433a0
38
T. Curran, J. I. Morgan, Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines. Science 229, 1265–1268 (1985). 10.1126/science.4035354
39
J. F. Guzowski, B. L. McNaughton, C. A. Barnes, P. F. Worley, Imaging neural activity with temporal and cellular resolution using FISH. Curr. Opin. Neurobiol. 11, 579–584 (2001). 10.1016/S0959-4388(00)00252-X
40
C. A. Denny, M. A. Kheirbek, E. L. Alba, K. F. Tanaka, R. A. Brachman, K. B. Laughman, N. K. Tomm, G. F. Turi, A. Losonczy, R. Hen, Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83, 189–201 (2014). 10.1016/j.neuron.2014.05.018
41
L. G. Reijmers, B. L. Perkins, N. Matsuo, M. Mayford, Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007). 10.1126/science.1143839
42
L. A. DeNardo, C. D. Liu, W. E. Allen, E. L. Adams, D. Friedmann, L. Fu, C. J. Guenthner, M. Tessier-Lavigne, L. Luo, Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat. Neurosci. 22, 460–469 (2019). 10.1038/s41593-018-0318-7
43
A. T. Sørensen, Y. A. Cooper, M. V. Baratta, F.-J. Weng, Y. Zhang, K. Ramamoorthi, R. Fropf, E. LaVerriere, J. Xue, A. Young, C. Schneider, C. R. Gøtzsche, M. Hemberg, J. C. P. Yin, S. F. Maier, Y. Lin, A robust activity marking system for exploring active neuronal ensembles. eLife 5, e13918 (2016). 10.7554/eLife.13918
44
M. S. Fanselow, L. S. Lester, in Evolution and Learning, R. C. Bolles, M. D. Beecher, Eds. (Lawrence Erlbaum Associates, Inc., 1988), pp. 185–212.
45
K. K. Tayler, K. Z. Tanaka, L. G. Reijmers, B. J. Wiltgen, Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr. Biol. 23, 99–106 (2013). 10.1016/j.cub.2012.11.019
46
S. Ramirez, X. Liu, P.-A. Lin, J. Suh, M. Pignatelli, R. L. Redondo, T. J. Ryan, S. Tonegawa, Creating a false memory in the hippocampus. Science 341, 387–391 (2013). 10.1126/science.1239073
47
W. Deng, M. Mayford, F. H. Gage, Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife 2, e00312 (2013). 10.7554/eLife.00312
48
K. Z. Tanaka, A. Pevzner, A. B. Hamidi, Y. Nakazawa, J. Graham, B. J. Wiltgen, Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347–354 (2014). 10.1016/j.neuron.2014.09.037
49
M. Zelikowsky, S. Hersman, M. K. Chawla, C. A. Barnes, M. S. Fanselow, Neuronal ensembles in amygdala, hippocampus, and prefrontal cortex track differential components of contextual fear. J. Neurosci. 34, 8462–8466 (2014). 10.1523/JNEUROSCI.3624-13.2014
50
Y. Nakazawa, A. Pevzner, K. Z. Tanaka, B. J. Wiltgen, Memory retrieval along the proximodistal axis of CA1. Hippocampus 26, 1140–1148 (2016). 10.1002/hipo.22596
51
T. Kitamura, S. K. Ogawa, D. S. Roy, T. Okuyama, M. D. Morrissey, L. M. Smith, R. L. Redondo, S. Tonegawa, Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73–78 (2017). 10.1126/science.aam6808
52
O. Khalaf, S. Resch, L. Dixsaut, V. Gorden, L. Glauser, J. Gräff, Reactivation of recall-induced neurons contributes to remote fear memory attenuation. Science 360, 1239–1242 (2018). 10.1126/science.aas9875
53
A. F. Lacagnina, E. T. Brockway, C. R. Crovetti, F. Shue, M. J. McCarty, K. P. Sattler, S. C. Lim, S. L. Santos, C. A. Denny, M. R. Drew, Distinct hippocampal engrams control extinction and relapse of fear memory. Nat. Neurosci. 22, 753–761 (2019). 10.1038/s41593-019-0361-z
54
H. Nomura, C. Teshirogi, D. Nakayama, M. Minami, Y. Ikegaya, Prior observation of fear learning enhances subsequent self-experienced fear learning with an overlapping neuronal ensemble in the dorsal hippocampus. Mol. Brain 12, 21 (2019). 10.1186/s13041-019-0443-6
55
S. Trouche, J. M. Sasaki, T. Tu, L. G. Reijmers, Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses. Neuron 80, 1054–1065 (2013). 10.1016/j.neuron.2013.07.047
56
A. Nonaka, T. Toyoda, Y. Miura, N. Hitora-Imamura, M. Naka, M. Eguchi, S. Yamaguchi, Y. Ikegaya, N. Matsuki, H. Nomura, Synaptic plasticity associated with a memory engram in the basolateral amygdala. J. Neurosci. 34, 9305–9309 (2014). 10.1523/JNEUROSCI.4233-13.2014
57
H. Xie, Y. Liu, Y. Zhu, X. Ding, Y. Yang, J.-S. Guan, In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proc. Natl. Acad. Sci. U.S.A. 111, 2788–2793 (2014). 10.1073/pnas.1316808111
58
J. H. Han, S. A. Kushner, A. P. Yiu, H.-L. Hsiang, T. Buch, A. Waisman, B. Bontempi, R. L. Neve, P. W. Frankland, S. A. Josselyn, Selective erasure of a fear memory. Science 323, 1492–1496 (2009). 10.1126/science.1164139
59
Y. Dong, T. Green, D. Saal, H. Marie, R. Neve, E. J. Nestler, R. C. Malenka, CREB modulates excitability of nucleus accumbens neurons. Nat. Neurosci. 9, 475–477 (2006). 10.1038/nn1661
60
H. Marie, W. Morishita, X. Yu, N. Calakos, R. C. Malenka, Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45, 741–752 (2005). 10.1016/j.neuron.2005.01.039
61
M. H. Han, C. A. Bolaños, T. A. Green, V. G. Olson, R. L. Neve, R. J. Liu, G. K. Aghajanian, E. J. Nestler, Role of cAMP response element-binding protein in the rat locus ceruleus: Regulation of neuronal activity and opiate withdrawal behaviors. J. Neurosci. 26, 4624–4629 (2006). 10.1523/JNEUROSCI.4701-05.2006
62
M. Lopez de Armentia, D. Jancic, R. Olivares, J. M. Alarcon, E. R. Kandel, A. Barco, cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J. Neurosci. 27, 13909–13918 (2007). 10.1523/JNEUROSCI.3850-07.2007
63
Y. Zhou, J. Won, M. G. Karlsson, M. Zhou, T. Rogerson, J. Balaji, R. Neve, P. Poirazi, A. J. Silva, CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat. Neurosci. 12, 1438–1443 (2009). 10.1038/nn.2405
64
E. Benito, A. Barco, CREB’s control of intrinsic and synaptic plasticity: Implications for CREB-dependent memory models. Trends Neurosci. 33, 230–240 (2010). 10.1016/j.tins.2010.02.001
65
D. Sargin, V. Mercaldo, A. P. Yiu, G. Higgs, J.-H. Han, P. W. Frankland, S. A. Josselyn, CREB regulates spine density of lateral amygdala neurons: Implications for memory allocation. Front. Behav. Neurosci. 7, 209 (2013). 10.3389/fnbeh.2013.00209
66
H. L. Hsiang, J. R. Epp, M. C. van den Oever, C. Yan, A. J. Rashid, N. Insel, L. Ye, Y. Niibori, K. Deisseroth, P. W. Frankland, S. A. Josselyn, Manipulating a “cocaine engram” in mice. J. Neurosci. 34, 14115–14127 (2014). 10.1523/JNEUROSCI.3327-14.2014
67
E. Koya, S. A. Golden, B. K. Harvey, D. H. Guez-Barber, A. Berkow, D. E. Simmons, J. M. Bossert, S. G. Nair, J. L. Uejima, M. T. Marin, T. B. Mitchell, D. Farquhar, S. C. Ghosh, B. J. Mattson, B. T. Hope, Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat. Neurosci. 12, 1069–1073 (2009). 10.1038/nn.2364
68
P. M. Milner, Cell assemblies: Whose idea? Psycholoquy 10, 1 (1999).
69
X. Liu, S. Ramirez, P. T. Pang, C. B. Puryear, A. Govindarajan, K. Deisseroth, S. Tonegawa, Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012). 10.1038/nature11028
70
E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005). 10.1038/nn1525
71
T. J. Ryan, D. S. Roy, M. Pignatelli, A. Arons, S. Tonegawa, Engram cells retain memory under retrograde amnesia. Science 348, 1007–1013 (2015). 10.1126/science.aaa5542
72
B. N. Armbruster, X. Li, M. H. Pausch, S. Herlitze, B. L. Roth, Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. U.S.A. 104, 5163–5168 (2007). 10.1073/pnas.0700293104
73
C. D. Nichols, B. L. Roth, Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Front. Mol. Neurosci. 2, 16 (2009). 10.3389/neuro.02.016.2009
74
K. K. Cowansage, T. Shuman, B. C. Dillingham, A. Chang, P. Golshani, M. Mayford, Direct reactivation of a coherent neocortical memory of context. Neuron 84, 432–441 (2014). 10.1016/j.neuron.2014.09.022
75
R. L. Redondo, J. Kim, A. L. Arons, S. Ramirez, X. Liu, S. Tonegawa, Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014). 10.1038/nature13725
76
A. P. Yiu, V. Mercaldo, C. Yan, B. Richards, A. J. Rashid, H.-L. L. Hsiang, J. Pressey, V. Mahadevan, M. M. Tran, S. A. Kushner, M. A. Woodin, P. W. Frankland, S. A. Josselyn, Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83, 722–735 (2014). 10.1016/j.neuron.2014.07.017
77
T. Rogerson, D. J. Cai, A. Frank, Y. Sano, J. Shobe, M. F. Lopez-Aranda, A. J. Silva, Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15, 157–169 (2014). 10.1038/nrn3667
78
J. Kim, J. T. Kwon, H. S. Kim, S. A. Josselyn, J. H. Han, Memory recall and modifications by activating neurons with elevated CREB. Nat. Neurosci. 17, 65–72 (2014). 10.1038/nn.3592
79
K. Abdou, M. Shehata, K. Choko, H. Nishizono, M. Matsuo, S. I. Muramatsu, K. Inokuchi, Synapse-specific representation of the identity of overlapping memory engrams. Science 360, 1227–1231 (2018). 10.1126/science.aat3810
80
A. Guskjolen, J. W. Kenney, J. de la Parra, B. A. Yeung, S. A. Josselyn, P. W. Frankland, Recovery of “lost” infant memories in mice. Curr. Biol. 28, 2283–2290.e3 (2018). 10.1016/j.cub.2018.05.059
81
K. Ghandour, N. Ohkawa, C. C. A. Fung, H. Asai, Y. Saitoh, T. Takekawa, R. Okubo-Suzuki, S. Soya, H. Nishizono, M. Matsuo, M. Osanai, M. Sato, M. Ohkura, J. Nakai, Y. Hayashi, T. Sakurai, T. Kitamura, T. Fukai, K. Inokuchi, Orchestrated ensemble activities constitute a hippocampal memory engram. Nat. Commun. 10, 2637 (2019). 10.1038/s41467-019-10683-2
82
I. Pavlov, Conditioned Reflexes (Oxford Univ. Press, 1927).
83
D. L. Schacter, E. F. Loftus, Memory and law: What can cognitive neuroscience contribute? Nat. Neurosci. 16, 119–123 (2013). 10.1038/nn.3294
84
A. R. Garner, D. C. Rowland, S. Y. Hwang, K. Baumgaertel, B. L. Roth, C. Kentros, M. Mayford, Generation of a synthetic memory trace. Science 335, 1513–1516 (2012). 10.1126/science.1214985
85
N. Ohkawa, Y. Saitoh, A. Suzuki, S. Tsujimura, E. Murayama, S. Kosugi, H. Nishizono, M. Matsuo, Y. Takahashi, M. Nagase, Y. K. Sugimura, A. M. Watabe, F. Kato, K. Inokuchi, Artificial association of pre-stored information to generate a qualitatively new memory. Cell Rep. 11, 261–269 (2015). 10.1016/j.celrep.2015.03.017
86
G. Vetere, L. M. Tran, S. Moberg, P. E. Steadman, L. Restivo, F. G. Morrison, K. J. Ressler, S. A. Josselyn, P. W. Frankland, Memory formation in the absence of experience. Nat. Neurosci. 22, 933–940 (2019). 10.1038/s41593-019-0389-0
87
J. A. Kauer, R. C. Malenka, Synaptic plasticity and addiction. Nat. Rev. Neurosci. 8, 844–858 (2007). 10.1038/nrn2234
88
J. H. Choi, S.-E. Sim, J. I. Kim, D. I. Choi, J. Oh, S. Ye, J. Lee, T. Kim, H.-G. Ko, C.-S. Lim, B.-K. Kaang, Interregional synaptic maps among engram cells underlie memory formation. Science 360, 430–435 (2018). 10.1126/science.aas9204
89
L. A. Gouty-Colomer, B. Hosseini, I. M. Marcelo, J. Schreiber, D. E. Slump, S. Yamaguchi, A. R. Houweling, D. Jaarsma, Y. Elgersma, S. A. Kushner, Arc expression identifies the lateral amygdala fear memory trace. Mol. Psychiatry 21, 364–375 (2016). 10.1038/mp.2015.18
90
A. Hayashi-Takagi, S. Yagishita, M. Nakamura, F. Shirai, Y. I. Wu, A. L. Loshbaugh, B. Kuhlman, K. M. Hahn, H. Kasai, Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525, 333–338 (2015). 10.1038/nature15257
91
S. Park, E. E. Kramer, V. Mercaldo, A. J. Rashid, N. Insel, P. W. Frankland, S. A. Josselyn, Neuronal allocation to a hippocampal engram. Neuropsychopharmacology 41, 2987–2993 (2016). 10.1038/npp.2016.73
92
M. J. Sekeres, V. Mercaldo, B. Richards, D. Sargin, V. Mahadevan, M. A. Woodin, P. W. Frankland, S. A. Josselyn, Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality. J. Neurosci. 32, 17857–17868 (2012). 10.1523/JNEUROSCI.1419-12.2012
93
M. J. Sekeres, R. L. Neve, P. W. Frankland, S. A. Josselyn, Dorsal hippocampal CREB is both necessary and sufficient for spatial memory. Learn. Mem. 17, 280–283 (2010). 10.1101/lm.1785510
94
T. Sacco, B. Sacchetti, Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science 329, 649–656 (2010). 10.1126/science.1183165
95
W. B. Kim, J. H. Cho, Synaptic targeting of double-projecting ventral CA1 hippocampal neurons to the medial prefrontal cortex and basal amygdala. J. Neurosci. 37, 4868–4882 (2017). 10.1523/JNEUROSCI.3579-16.2017
96
Y. Yang, D. Q. Liu, W. Huang, J. Deng, Y. Sun, Y. Zuo, M. M. Poo, Selective synaptic remodeling of amygdalocortical connections associated with fear memory. Nat. Neurosci. 19, 1348–1355 (2016). 10.1038/nn.4370
97
A. L. Wheeler, C. M. Teixeira, A. H. Wang, X. Xiong, N. Kovacevic, J. P. Lerch, A. R. McIntosh, J. Parkinson, P. W. Frankland, Identification of a functional connectome for long-term fear memory in mice. PLOS Comput. Biol. 9, e1002853 (2013). 10.1371/journal.pcbi.1002853
98
G. Vetere, J. W. Kenney, L. M. Tran, F. Xia, P. E. Steadman, J. Parkinson, S. A. Josselyn, P. W. Frankland, Chemogenetic interrogation of a brain-wide fear memory network in mice. Neuron 94, 363–374.e4 (2017). 10.1016/j.neuron.2017.03.037
99
D. S. Roy, Y.-G. Park, S. K. Ogawa, J. H. Cho, H. Choi, L. Kamensky, J. Martin, K. Chung, S. Tonegawa, Brain-wide mapping of contextual fear memory engram ensembles supports the dispersed engram complex hypothesis. bioRxiv 668483 [Preprint]. 12 June 2019. .10.1101/668483
100
P. W. Frankland, B. Bontempi, L. E. Talton, L. Kaczmarek, A. J. Silva, The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881–883 (2004). 10.1126/science.1094804
101
K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, K. Deisseroth, Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013). 10.1038/nature12107
102
Y. G. Park, C. H. Sohn, R. Chen, M. McCue, D. H. Yun, G. T. Drummond, T. Ku, N. B. Evans, H. C. Oak, W. Trieu, H. Choi, X. Jin, V. Lilascharoen, J. Wang, M. C. Truttmann, H. W. Qi, H. L. Ploegh, T. R. Golub, S. C. Chen, M. P. Frosch, H. J. Kulik, B. K. Lim, K. Chung, Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. (2018). 30556815
103
J. O’Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971). 10.1016/0006-8993(71)90358-1
104
V. Ego-Stengel, M. A. Wilson, Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10 (2010). 19816984
105
G. Girardeau, K. Benchenane, S. I. Wiener, G. Buzsáki, M. B. Zugaro, Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009). 10.1038/nn.2384
106
T. J. McHugh, M. W. Jones, J. J. Quinn, N. Balthasar, R. Coppari, J. K. Elmquist, B. B. Lowell, M. S. Fanselow, M. A. Wilson, S. Tonegawa, Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317, 94–99 (2007). 10.1126/science.1140263
107
K. Z. Tanaka, H. He, A. Tomar, K. Niisato, A. J. Y. Huang, T. J. McHugh, The hippocampal engram maps experience but not place. Science 361, 392–397 (2018). 10.1126/science.aat5397
108
M. A. Wilson, B. L. McNaughton, Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994). 10.1126/science.8036517
109
S. Diekelmann, J. Born, The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010). 10.1038/nrn2762
110
H. R. Joo, L. M. Frank, The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19, 744–757 (2018). 10.1038/s41583-018-0077-1
111
G. Buzsáki, Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015). 10.1002/hipo.22488
112
M. F. Carr, S. P. Jadhav, L. M. Frank, Hippocampal replay in the awake state: A potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011). 10.1038/nn.2732
113
H. S. Kudrimoti, C. A. Barnes, B. L. McNaughton, Reactivation of hippocampal cell assemblies: Effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999). 10.1523/JNEUROSCI.19-10-04090.1999
114
A. G. Siapas, M. A. Wilson, Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998). 10.1016/S0896-6273(00)80629-7
115
F. Xia, B. A. Richards, M. M. Tran, S. A. Josselyn, K. Takehara-Nishiuchi, P. W. Frankland, Parvalbumin-positive interneurons mediate neocortical-hippocampal interactions that are necessary for memory consolidation. eLife 6, e27868 (2017). 10.7554/eLife.27868
116
A. I. Abbas, M. J. M. Sundiang, B. Henoch, M. P. Morton, S. S. Bolkan, A. J. Park, A. Z. Harris, C. Kellendonk, J. A. Gordon, Somatostatin interneurons facilitate hippocampal-prefrontal synchrony and prefrontal spatial encoding. Neuron 100, 926–939.e3 (2018). 10.1016/j.neuron.2018.09.029
117
D. Dupret, J. O’Neill, B. Pleydell-Bouverie, J. Csicsvari, The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010). 10.1038/nn.2599
118
S. P. Jadhav, C. Kemere, P. W. German, L. M. Frank, Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012). 10.1126/science.1217230
119
S. Lewis, Sleep: Ever-decreasing ripples. Nat. Rev. Neurosci. 19, 184 (2018). 29515191
120
H. Norimoto, K. Makino, M. Gao, Y. Shikano, K. Okamoto, T. Ishikawa, T. Sasaki, H. Hioki, S. Fujisawa, Y. Ikegaya, Hippocampal ripples down-regulate synapses. Science 359, 1524–1527 (2018). 10.1126/science.aao0702
121
S. A. Josselyn, P. W. Frankland, Memory allocation: Mechanisms and function. Annu. Rev. Neurosci. 41, 389–413 (2018). 10.1146/annurev-neuro-080317-061956
122
J. H. Han, S. A. Kushner, A. P. Yiu, C. J. Cole, A. Matynia, R. A. Brown, R. L. Neve, J. F. Guzowski, A. J. Silva, S. A. Josselyn, Neuronal competition and selection during memory formation. Science 316, 457–460 (2007). 10.1126/science.1139438
123
J. H. Han, A. P. Yiu, C. J. Cole, H.-L. Hsiang, R. L. Neve, S. A. Josselyn, Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. Learn. Mem. 15, 443–453 (2008). 10.1101/lm.993608
124
S. A. Josselyn, Continuing the search for the engram: Examining the mechanism of fear memories. J. Psychiatry Neurosci. 35, 221–228 (2010). 10.1503/jpn.100015
125
A. J. Silva, Y. Zhou, T. Rogerson, J. Shobe, J. Balaji, Molecular and cellular approaches to memory allocation in neural circuits. Science 326, 391–395 (2009). 10.1126/science.1174519
126
M. R. Matos, E. Visser, I. Kramvis, R. J. van der Loo, T. Gebuis, R. Zalm, P. Rao-Ruiz, H. D. Mansvelder, A. B. Smit, M. C. van den Oever, Memory strength gates the involvement of a CREB-dependent cortical fear engram in remote memory. Nat. Commun. 10, 2315 (2019). 10.1038/s41467-019-10266-1
127
Y. Sano, J. L. Shobe, M. Zhou, S. Huang, T. Shuman, D. J. Cai, P. Golshani, M. Kamata, A. J. Silva, CREB regulates memory allocation in the insular cortex. Curr. Biol. 24, 2833–2837 (2014). 10.1016/j.cub.2014.10.018
128
R. Czajkowski, B. Jayaprakash, B. Wiltgen, T. Rogerson, M. C. Guzman-Karlsson, A. L. Barth, J. T. Trachtenberg, A. J. Silva, Encoding and storage of spatial information in the retrosplenial cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8661–8666 (2014). 10.1073/pnas.1313222111
129
G. B. Choi, D. D. Stettler, B. R. Kallman, S. T. Bhaskar, A. Fleischmann, R. Axel, Driving opposing behaviors with ensembles of piriform neurons. Cell 146, 1004–1015 (2011). 10.1016/j.cell.2011.07.041
130
D. Kim, D. Paré, S. S. Nair, Assignment of model amygdala neurons to the fear memory trace depends on competitive synaptic interactions. J. Neurosci. 33, 14354–14358 (2013). 10.1523/JNEUROSCI.2430-13.2013
131
D. Kim, D. Paré, S. S. Nair, Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn. Mem. 20, 421–430 (2013). 10.1101/lm.030262.113
132
D. Kim, P. Samarth, F. Feng, D. Pare, S. S. Nair, Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: A biophysical modeling study. Brain Struct. Funct. 221, 2163–2182 (2016). 10.1007/s00429-015-1037-4
133
D. L. Alkon, Changes of membrane currents during learning. J. Exp. Biol. 112, 95–112 (1984). 6150967
134
D. L. Alkon, I. Lederhendler, J. J. Shoukimas, Primary changes of membrane currents during retention of associative learning. Science 215, 693–695 (1982). 10.1126/science.7058334
135
K. P. Scholz, J. H. Byrne, Long-term sensitization in Aplysia: Biophysical correlates in tail sensory neurons. Science 235, 685–687 (1987). 10.1126/science.2433766
136
M. A. Wilson, B. L. McNaughton, Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993). 10.1126/science.8351520
137
J. D. Cohen, M. Bolstad, A. K. Lee, Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. eLife 6, e23040 (2017). 10.7554/eLife.23040
138
J. Epsztein, M. Brecht, A. K. Lee, Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120 (2011). 10.1016/j.neuron.2011.03.006
139
P. D. Rich, H. P. Liaw, A. K. Lee, Large environments reveal the statistical structure governing hippocampal representations. Science 345, 814–817 (2014). 10.1126/science.1255635
140
D. Lee, B. J. Lin, A. K. Lee, Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849–853 (2012). 10.1126/science.1221489
141
J. P. Rickgauer, K. Deisseroth, D. W. Tank, Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17, 1816–1824 (2014). 10.1038/nn.3866
142
J.-P. Changeux, A. Danchin, Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264, 705–712 (1976). 10.1038/264705a0
143
J. Z. Young, Learning as a process of selection and amplification. J. R. Soc. Med. 72, 801–814 (1979). 10.1177/014107687907201103
144
P. Kanerva, Sparse Distributed Memory (MIT Press, 1988).
145
D. J. Morrison, A. J. Rashid, A. P. Yiu, C. Yan, P. W. Frankland, S. A. Josselyn, Parvalbumin interneurons constrain the size of the lateral amygdala engram. Neurobiol. Learn. Mem. 135, 91–99 (2016). 10.1016/j.nlm.2016.07.007
146
P. Rao-Ruiz, J. Yu, S. A. Kushner, S. A. Josselyn, Neuronal competition: Microcircuit mechanisms define the sparsity of the engram. Curr. Opin. Neurobiol. 54, 163–170 (2019). 10.1016/j.conb.2018.10.013
147
T. Stefanelli, C. Bertollini, C. Lüscher, D. Muller, P. Mendez, Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 89, 1074–1085 (2016). 10.1016/j.neuron.2016.01.024
148
H. C. Barron, T. P. Vogels, T. E. Behrens, M. Ramaswami, Inhibitory engrams in perception and memory. Proc. Natl. Acad. Sci. U.S.A. 114, 6666–6674 (2017). 28611219
149
H. C. Barron, T. P. Vogels, U. E. Emir, T. R. Makin, J. O’Shea, S. Clare, S. Jbabdi, R. J. Dolan, T. E. J. Behrens, Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories. Neuron 90, 191–203 (2016). 10.1016/j.neuron.2016.02.031
150
G. Hennequin, E. J. Agnes, T. P. Vogels, Inhibitory plasticity: Balance, control, and codependence. Annu. Rev. Neurosci. 40, 557–579 (2017). 10.1146/annurev-neuro-072116-031005
151
S. Maren, C. R. Ferrario, K. A. Corcoran, T. J. Desmond, K. A. Frey, Protein synthesis in the amygdala, but not the auditory thalamus, is required for consolidation of Pavlovian fear conditioning in rats. Eur. J. Neurosci. 18, 3080–3088 (2003). 10.1111/j.1460-9568.2003.03063.x
152
G. E. Schafe, J. E. LeDoux, Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J. Neurosci. 20, RC96 (2000). 10.1523/JNEUROSCI.20-18-j0003.2000
153
P. J. Hernandez, T. Abel, The role of protein synthesis in memory consolidation: Progress amid decades of debate. Neurobiol. Learn. Mem. 89, 293–311 (2008). 10.1016/j.nlm.2007.09.010
154
G. E. Schafe, N. V. Nadel, G. M. Sullivan, A. Harris, J. E. LeDoux, Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn. Mem. 6, 97–110 (1999). 10327235
155
S. A. Josselyn, S. Kida, A. J. Silva, Inducible repression of CREB function disrupts amygdala-dependent memory. Neurobiol. Learn. Mem. 82, 159–163 (2004). 10.1016/j.nlm.2004.05.008
156
Y. Dudai, M. Eisenberg, Rites of passage of the engram: Reconsolidation and the lingering consolidation hypothesis. Neuron 44, 93–100 (2004). 10.1016/j.neuron.2004.09.003
157
S. H. Wang, R. G. Morris, Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu. Rev. Psychol. 61, 49–79, C1–C4 (2010). 10.1146/annurev.psych.093008.100523
158
P. W. Frankland, B. Bontempi, The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005). 10.1038/nrn1607
159
B. J. Wiltgen, R. A. M. Brown, L. E. Talton, A. J. Silva, New circuits for old memories: The role of the neocortex in consolidation. Neuron 44, 101–108 (2004). 10.1016/j.neuron.2004.09.015
160
D. S. Roy, S. Muralidhar, L. M. Smith, S. Tonegawa, Silent memory engrams as the basis for retrograde amnesia. Proc. Natl. Acad. Sci. U.S.A. 114, E9972–E9979 (2017). 10.1073/pnas.1714248114
161
S. Nabavi, R. Fox, C. D. Proulx, J. Y. Lin, R. Y. Tsien, R. Malinow, Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014). 10.1038/nature13294
162
M. H. Monfils, G. C. Teskey, Induction of long-term depression is associated with decreased dendritic length and spine density in layers III and V of sensorimotor neocortex. Synapse 53, 114–121 (2004). 10.1002/syn.20039
163
Q. Zhou, K. J. Homma, M. M. Poo, Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004). 10.1016/j.neuron.2004.11.011
164
J. N. Bourne, K. M. Harris, Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47–67 (2008). 10.1146/annurev.neuro.31.060407.125646
165
M. F. Bear, R. C. Malenka, Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol. 4, 389–399 (1994). 10.1016/0959-4388(94)90101-5
166
D. S. Roy, A. Arons, T. I. Mitchell, M. Pignatelli, T. J. Ryan, S. Tonegawa, Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531, 508–512 (2016). 10.1038/nature17172
167
J. N. Perusini, S. A. Cajigas, O. Cohensedgh, S. C. Lim, I. P. Pavlova, Z. R. Donaldson, C. A. Denny, Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer’s disease mice. Hippocampus 27, 1110–1122 (2017). 10.1002/hipo.22756
168
M. El Haj, V. Postal, P. Allain, Music enhances autobiographical memory in mild Alzheimer’s disease. Educ. Gerontol. 38, 30–41 (2012). 10.1080/03601277.2010.515897
169
A. Herlitz, R. Adolfsson, L. Bäckman, L. G. Nilsson, Cue utilization following different forms of encoding in mildly, moderately, and severely demented patients with Alzheimer’s disease. Brain Cogn. 15, 119–130 (1991). 10.1016/0278-2626(91)90020-9
170
E. K. Warrington, L. Weiskrantz, Amnesic syndrome: Consolidation or retrieval? Nature 228, 628–630 (1970). 10.1038/228628a0
171
R. R. Miller, L. D. Matzel, Retrieval failure versus memory loss in experimental amnesia: Definitions and processes. Learn. Mem. 13, 491–497 (2006). 10.1101/lm.241006
172
O. Hardt, S. H. Wang, K. Nader, Storage or retrieval deficit: The yin and yang of amnesia. Learn. Mem. 16, 224–230 (2009). 10.1101/lm.1267409
173
L. R. Squire, Lost forever or temporarily misplaced? The long debate about the nature of memory impairment. Learn. Mem. 13, 522–529 (2006). 10.1101/lm.310306
174
E. Tulving, Z. Pearlstone, Availability versus accessibility of information in memory for words. J. Verbal Learn. Verbal Behav. 5, 381–391 (1966). 10.1016/S0022-5371(66)80048-8
175
P. W. Frankland, S. A. Josselyn, S. Köhler, The neurobiological foundation of memory retrieval. Nat. Neurosci. 22, 1576–1585 (2019). 10.1038/s41593-019-0493-1
176
J. H. Kogan, P. W. Franklandand, A. J. Silva, Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10, 47–56 (2000). 10.1002/(SICI)1098-1063(2000)10:1<47::AID-HIPO5>3.0.CO;2-6
177
F. L. Hitti, S. A. Siegelbaum, The hippocampal CA2 region is essential for social memory. Nature 508, 88–92 (2014). 10.1038/nature13028
178
T. Okuyama, T. Kitamura, D. S. Roy, S. Itohara, S. Tonegawa, Ventral CA1 neurons store social memory. Science 353, 1536–1541 (2016). 10.1126/science.aaf7003
179
J. Kim, S. Lee, K. Park, I. Hong, B. Song, G. Son, H. Park, W. R. Kim, E. Park, H. K. Choe, H. Kim, C. Lee, W. Sun, K. Kim, K. S. Shin, S. Choi, Amygdala depotentiation and fear extinction. Proc. Natl. Acad. Sci. U.S.A. 104, 20955–20960 (2007). 10.1073/pnas.0710548105
180
I. Hong, B. Song, S. Lee, J. Kim, J. Kim, S. Choi, Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala. Eur. J. Neurosci. 30, 2089–2099 (2009). 10.1111/j.1460-9568.2009.07004.x
181
C.-H. Lin, C.-C. Lee, P.-W. Gean, Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol. Pharmacol. 63, 44–52 (2003). 10.1124/mol.63.1.44
182
T. Yoshii, H. Hosokawa, N. Matsuo, Pharmacogenetic reactivation of the original engram evokes an extinguished fear memory. Neuropharmacology 113, 1–9 (2017). 10.1016/j.neuropharm.2016.09.012
183
R. L. Clem, D. Schiller, New learning and unlearning: Strangers or accomplices in threat memory attenuation? Trends Neurosci. 39, 340–351 (2016). 10.1016/j.tins.2016.03.003
184
N. V. Luchkina, V. Y. Bolshakov, Mechanisms of fear learning and extinction: Synaptic plasticity-fear memory connection. Psychopharmacology (Berl.) 236, 163–182 (2019). 10.1007/s00213-018-5104-4
185
C. A. Orsini, S. Maren, Neural and cellular mechanisms of fear and extinction memory formation. Neurosci. Biobehav. Rev. 36, 1773–1802 (2012). 10.1016/j.neubiorev.2011.12.014
186
K. M. Myers, M. Davis, Mechanisms of fear extinction. Mol. Psychiatry 12, 120–150 (2007). 10.1038/sj.mp.4001939
187
M. E. Bouton, R. F. Westbrook, K. A. Corcoran, S. Maren, Contextual and temporal modulation of extinction: Behavioral and biological mechanisms. Biol. Psychiatry 60, 352–360 (2006). 10.1016/j.biopsych.2005.12.015
188
J. Ji, S. Maren, Hippocampal involvement in contextual modulation of fear extinction. Hippocampus 17, 749–758 (2007). 10.1002/hipo.20331
189
M. E. Bouton, Context and behavioral processes in extinction. Learn. Mem. 11, 485–494 (2004). 10.1101/lm.78804
190
G. J. Quirk, D. Mueller, Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56–72 (2008). 10.1038/sj.npp.1301555
191
M. E. Bouton, J. B. Nelson, Context-specificity of target versus feature inhibition in a feature-negative discrimination. J. Exp. Psychol. Anim. Behav. Process. 20, 51–65 (1994). 10.1037/0097-7403.20.1.51
192
R. A. Rescorla, C. D. Heth, Reinstatement of fear to an extinguished conditioned stimulus. J. Exp. Psychol. Anim. Behav. Process. 1, 88–96 (1975). 10.1037/0097-7403.1.1.88
193
M. H. Monfils, K. K. Cowansage, E. Klann, J. E. LeDoux, Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science 324, 951–955 (2009). 10.1126/science.1167975
194
D. Schiller, M.-H. Monfils, C. M. Raio, D. C. Johnson, J. E. Ledoux, E. A. Phelps, Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463, 49–53 (2010). 10.1038/nature08637
195
X. Zhang, J. Kim, S. Tonegawa, Amygdala reward neurons form and store fear extinction memory. Neuron 10.1016/j.neuron.2019.12.025 (2020).
196
J. J. Kim, M. S. Fanselow, Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992). 10.1126/science.1585183
197
S. Maren, G. Aharonov, M. S. Fanselow, Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav. Brain Res. 88, 261–274 (1997). 10.1016/S0166-4328(97)00088-0
198
K. K. Tayler, K. Z. Tanaka, L. G. Reijmers, B. J. Wiltgen, Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr. Biol. 23, 99–106 (2013). 10.1016/j.cub.2012.11.019
199
S. Tonegawa, M. D. Morrissey, T. Kitamura, The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 19, 485–498 (2018). 10.1038/s41583-018-0031-2
200
B. J. Wiltgen, A. J. Silva, Memory for context becomes less specific with time. Learn. Mem. 14, 313–317 (2007). 10.1101/lm.430907
201
B. J. Wiltgen, M. Zhou, Y. Cai, J. Balaji, M. G. Karlsson, S. N. Parivash, W. Li, A. J. Silva, The hippocampus plays a selective role in the retrieval of detailed contextual memories. Curr. Biol. 20, 1336–1344 (2010). 10.1016/j.cub.2010.06.068
202
S. H. Wang, C. M. Teixeira, A. L. Wheeler, P. W. Frankland, The precision of remote context memories does not require the hippocampus. Nat. Neurosci. 12, 253–255 (2009). 10.1038/nn.2263
203
G. Winocur, M. Moscovitch, Memory transformation and systems consolidation. J. Int. Neuropsychol. Soc. 17, 766–780 (2011). 10.1017/S1355617711000683
204
M. Moscovitch, R. Cabeza, G. Winocur, L. Nadel, Episodic memory and beyond: The hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016). 10.1146/annurev-psych-113011-143733
205
N. Guo, M. E. Soden, C. Herber, M. T. W. Kim, A. Besnard, P. Lin, X. Ma, C. L. Cepko, L. S. Zweifel, A. Sahay, Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat. Med. 24, 438–449 (2018). 10.1038/nm.4491
206
M. Shehata, K. Abdou, K. Choko, M. Matsuo, H. Nishizono, K. Inokuchi, Autophagy enhances memory erasure through synaptic destabilization. J. Neurosci. 38, 3809–3822 (2018). 10.1523/JNEUROSCI.3505-17.2018
207
C. B. Kirwan, C. E. Stark, Overcoming interference: An fMRI investigation of pattern separation in the medial temporal lobe. Learn. Mem. 14, 625–633 (2007). 10.1101/lm.663507
208
J. K. Leutgeb, S. Leutgeb, M. B. Moser, E. I. Moser, Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966 (2007). 10.1126/science.1135801
209
K. A. Norman, R. C. O’Reilly, Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychol. Rev. 110, 611–646 (2003). 10.1037/0033-295X.110.4.611
210
A. Gilboa, H. Marlatte, Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci. 21, 618–631 (2017). 10.1016/j.tics.2017.04.013
211
S. McKenzie, H. Eichenbaum, Consolidation and reconsolidation: Two lives of memories? Neuron 71, 224–233 (2011). 10.1016/j.neuron.2011.06.037
212
M. L. Schlichting, A. R. Preston, Memory integration: Neural mechanisms and implications for behavior. Curr. Opin. Behav. Sci. 1, 1–8 (2015). 10.1016/j.cobeha.2014.07.005
213
D. Tse, R. F. Langston, M. Kakeyama, I. Bethus, P. A. Spooner, E. R. Wood, M. P. Witter, R. G. M. Morris, Schemas and memory consolidation. Science 316, 76–82 (2007). 10.1126/science.1135935
214
D. Zeithamova, A. R. Preston, Temporal proximity promotes integration of overlapping events. J. Cogn. Neurosci. 29, 1311–1323 (2017). 10.1162/jocn_a_01116
215
A. J. Rashid, C. Yan, V. Mercaldo, H.-L. Hsiang, S. Park, C. J. Cole, A. De Cristofaro, J. Yu, C. Ramakrishnan, S. Y. Lee, K. Deisseroth, P. W. Frankland, S. A. Josselyn, Competition between engrams influences fear memory formation and recall. Science 353, 383–387 (2016). 10.1126/science.aaf0594
216
D. J. Cai, D. Aharoni, T. Shuman, J. Shobe, J. Biane, W. Song, B. Wei, M. Veshkini, M. La-Vu, J. Lou, S. E. Flores, I. Kim, Y. Sano, M. Zhou, K. Baumgaertel, A. Lavi, M. Kamata, M. Tuszynski, M. Mayford, P. Golshani, A. J. Silva, A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016). 10.1038/nature17955
217
M. Sehgal, M. Zhou, A. Lavi, S. Huang, Y. Zhou, A. J. Silva, Memory allocation mechanisms underlie memory linking across time. Neurobiol. Learn. Mem. 153, 21–25 (2018). 10.1016/j.nlm.2018.02.021
218
P. Rao-Ruiz, J. J. Couey, I. M. Marcelo, C. G. Bouwkamp, D. E. Slump, M. R. Matos, R. J. van der Loo, G. J. Martins, M. van den Hout, W. F. van IJcken, R. M. Costa, M. C. van den Oever, S. A. Kushner, Engram-specific transcriptome profiling of contextual memory consolidation. Nat. Commun. 10, 2232 (2019). 10.1038/s41467-019-09960-x
219
M. Pignatelli, T. J. Ryan, D. S. Roy, C. Lovett, L. M. Smith, S. Muralidhar, S. Tonegawa, Engram cell excitability state determines the efficacy of memory retrieval. Neuron 101, 274–284.e5 (2019). 10.1016/j.neuron.2018.11.029
220
J. Yokose, R. Okubo-Suzuki, M. Nomoto, N. Ohkawa, H. Nishizono, A. Suzuki, M. Matsuo, S. Tsujimura, Y. Takahashi, M. Nagase, A. M. Watabe, M. Sasahara, F. Kato, K. Inokuchi, Overlapping memory trace indispensable for linking, but not recalling, individual memories. Science 355, 398–403 (2017). 10.1126/science.aal2690
221
B. J. Levy, A. D. Wagner, Measuring memory reactivation with functional MRI: Implications for psychological theory. Perspect. Psychol. Sci. 8, 72–78 (2013). 10.1177/1745691612469031
222
M. L. Mack, B. C. Love, A. R. Preston, Building concepts one episode at a time: The hippocampus and concept formation. Neurosci. Lett. 680, 31–38 (2018). 10.1016/j.neulet.2017.07.061
223
M. L. Schlichting, A. R. Preston, Memory reactivation during rest supports upcoming learning of related content. Proc. Natl. Acad. Sci. U.S.A. 111, 15845–15850 (2014). 10.1073/pnas.1404396111
224
D. Zeithamova, M. L. Schlichting, A. R. Preston, The hippocampus and inferential reasoning: Building memories to navigate future decisions. Front. Hum. Neurosci. 6, 70 (2012). 10.3389/fnhum.2012.00070
225
M. S. Gazzaniga, Conversations in the Cognitive Neurosciences (MIT Press, 1997).
226
H. B. Barlow, in The Cognitive Neurosciences, M. S. Gazzaniga, Ed. (MIT Press, 1995), pp. 415–435.
227
C. G. Gross, Genealogy of the “grandmother cell”. Neuroscientist 8, 512–518 (2002). 10.1177/107385802237175
228
R. Yuste, From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015). 10.1038/nrn3962
229
H. Eichenbaum, Barlow versus Hebb: When is it time to abandon the notion of feature detectors and adopt the cell assembly as the unit of cognition? Neurosci. Lett. 680, 88–93 (2018). 10.1016/j.neulet.2017.04.006
230
C. A. Denny, E. Lebois, S. Ramirez, From engrams to pathologies of the brain. Front. Neural Circuits 11, 23 (2017). 10.3389/fncir.2017.00023
231
E. C. Tolman, C. H. Honzik, Introduction and removal of reward, and maze performance in rats. Univ. Calif. Publ. Psychol. 4, 257–275 (1930).
232
G. T. Philips, E. I. Tzvetkova, S. Marinesco, T. J. Carew, Latent memory for sensitization in Aplysia. Learn. Mem. 13, 224–229 (2006). 10.1101/lm.111506
233
R. E. Lubow, A. U. Moore, Latent inhibition: The effect of nonreinforced pre-exposure to the conditional stimulus. J. Comp. Physiol. Psychol. 52, 415–419 (1959). 10.1037/h0046700
234
D. J. Lewis, Psychobiology of active and inactive memory. Psychol. Bull. 86, 1054–1083 (1979). 10.1037/0033-2909.86.5.1054
235
K. Nader, G. E. Schafe, J. E. Le Doux, Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000). 10.1038/35021052
236
J. Przybyslawski, S. J. Sara, Reconsolidation of memory after its reactivation. Behav. Brain Res. 84, 241–246 (1997). 10.1016/S0166-4328(96)00153-2
237
S. Kida, S. A. Josselyn, S. Peña de Ortiz, J. H. Kogan, I. Chevere, S. Masushige, A. J. Silva, CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348–355 (2002). 10.1038/nn819
238
S. J. Sara, Retrieval and reconsolidation: Toward a neurobiology of remembering. Learn. Mem. 7, 73–84 (2000). 10.1101/lm.7.2.73
239
R. G. Morris, J. Inglis, J. A. Ainge, H. J. Olverman, J. Tulloch, Y. Dudai, P. A. T. Kelly, Memory reconsolidation: Sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron 50, 479–489 (2006). 10.1016/j.neuron.2006.04.012
240
J. L. Lee, Memory reconsolidation mediates the updating of hippocampal memory content. Front. Behav. Neurosci. 4, 168 (2010). 10.3389/fnbeh.2010.00168
241
M. Eisenberg, T. Kobilo, D. E. Berman, Y. Dudai, Stability of retrieved memory: Inverse correlation with trace dominance. Science 301, 1102–1104 (2003). 10.1126/science.1086881
242
M. C. Anderson, R. A. Bjork, E. L. Bjork, Remembering can cause forgetting: Retrieval dynamics in long-term memory. J. Exp. Psychol. Learn. Mem. Cogn. 20, 1063–1087 (1994). 10.1037/0278-7393.20.5.1063
243
B. A. Richards, P. W. Frankland, The conjunctive trace. Hippocampus 23, 207–212 (2013). 10.1002/hipo.22089
244
A. Rubin, N. Geva, L. Sheintuch, Y. Ziv, Hippocampal ensemble dynamics timestamp events in long-term memory. eLife 4, e12247 (2015). 10.7554/eLife.12247
245
S. Brodt, S. Gais, J. Beck, M. Erb, K. Scheffler, M. Schönauer, Fast track to the neocortex: A memory engram in the posterior parietal cortex. Science 362, 1045–1048 (2018). 10.1126/science.aau2528
246
K. Nader, Memory traces unbound. Trends Neurosci. 26, 65–72 (2003). 10.1016/S0166-2236(02)00042-5
247
Y. Dudai, The restless engram: Consolidations never end. Annu. Rev. Neurosci. 35, 227–247 (2012). 10.1146/annurev-neuro-062111-150500
248
D. Schiller, E. A. Phelps, Does reconsolidation occur in humans? Front. Behav. Neurosci. 5, 24 (2011). 10.3389/fnbeh.2011.00024
249
M. Kindt, M. Soeter, B. Vervliet, Beyond extinction: Erasing human fear responses and preventing the return of fear. Nat. Neurosci. 12, 256–258 (2009). 10.1038/nn.2271

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 367 | Issue 6473
3 January 2020

Submission history

Published in print: 3 January 2020

Permissions

Request permissions for this article.

Acknowledgments

We thank our many colleagues for interesting conversations that shaped this review. In particular, we would like to acknowledge the contributions of Y. Dudai, P. Frankland, S. Köhler, M. Pignatelli, and S. Waddell, as well as J. Lau (for figure preparation) and D. Roy and J. Yu (for a sorted publication list); and the members of the Josselyn, Tonegawa, and Frankland labs for helpful discussions. Funding: Supported by the Canadian Institute of Health Research (CIHR, FDN-388455), the Natural Science and Engineering Research Council (NSERC) Discovery Grant, the Canadian Institute for Advanced Studies (CiFAR) Grant, and the NIH (NIMH, 1 R01 MH119421-01) (to S.A.J); and by RIKEN’s Center for Brain Science, Howard Hughes Medical Institute (HHMI), and JPB Foundation (to S.T.). Competing interests: The authors declare no competing interests.

Authors

Affiliations

Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.
Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada.
Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada.
Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada.
RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Funding Information

NIMH: 1 R01 MH119421-01
NSERC

Notes

*
Corresponding author. Email: [email protected] (S.A.J.); [email protected] (S.T.)

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Fear Conditioning in Laboratory Rodents, Psychiatric Vulnerability, Mood, and Anxiety Disorders, (119-160), (2023).https://doi.org/10.1007/978-1-0716-2748-8_8
    Crossref
  2. Neural correlates of recall and extinction in a rat model of appetitive Pavlovian conditioning, Behavioural Brain Research, 440, (114248), (2023).https://doi.org/10.1016/j.bbr.2022.114248
    Crossref
  3. Neural ensembles in navigation: From single cells to population codes, Current Opinion in Neurobiology, 78, (102665), (2023).https://doi.org/10.1016/j.conb.2022.102665
    Crossref
  4. The Ethics of Memory Modification: Personal Narratives, Relational Selves and Autonomy, Neuroethics, 16, 1, (2022).https://doi.org/10.1007/s12152-022-09512-z
    Crossref
  5. Locus coeruleus input-modulated reactivation of dentate gyrus opioid-withdrawal engrams promotes extinction, Neuropsychopharmacology, 48, 2, (327-340), (2022).https://doi.org/10.1038/s41386-022-01477-0
    Crossref
  6. Neuronal ensembles in memory processes, Seminars in Cell & Developmental Biology, 125, (136-143), (2022).https://doi.org/10.1016/j.semcdb.2021.04.004
    Crossref
  7. The essence of the engram: Cellular or synaptic?, Seminars in Cell & Developmental Biology, 125, (122-135), (2022).https://doi.org/10.1016/j.semcdb.2021.05.033
    Crossref
  8. High-resolution imaging and manipulation of endogenous AMPA receptor surface mobility during synaptic plasticity and learning, Science Advances, 8, 30, (2022)./doi/10.1126/sciadv.abm5298
    Abstract
  9. Synaptic ensembles between raphe and D1R-containing accumbens shell neurons underlie postisolation sociability in males, Science Advances, 8, 41, (2022)./doi/10.1126/sciadv.abo7527
    Abstract
  10. Synaptic activity–dependent changes in the hippocampal palmitoylome, Science Signaling, 15, 763, (2022)./doi/10.1126/scisignal.add2519
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media