The neural substrate of memory

The ability to form memory is an essential trait that allows learning and the accumulation of knowledge. But what is a memory? There has been a long history of searching for the neuronal substrate that forms memory in the brain, and the emerging view is that ensembles of engram cells explain how memories are formed and retrieved. In a Review, Josselyn and Tonegawa discuss the evidence for engram cells as a substrate of memory, particularly in rodents; what we have learned so far about the features of memory, including memory formation, retrieval over time, and loss; and future directions to understand how memory becomes knowledge.
Science, this issue p. eaaw4325

Structured Abstract


The idea that memory is stored as enduring changes in the brain dates back at least to the time of Plato and Aristotle (circa 350 BCE), but its scientific articulation emerged in the 20th century when Richard Semon introduced the term “engram” to describe the neural substrate for storing and recalling memories. Essentially, Semon proposed that an experience activates a population of neurons that undergo persistent chemical and/or physical changes to become an engram. Subsequent reactivation of the engram by cues available at the time of the experience induces memory retrieval. After Karl Lashley failed to find the engram in a rat brain, studies attempting to localize an engram were largely abandoned. Spurred by Donald O. Hebb’s theory that augmented synaptic strength and neuronal connectivity are critical for memory formation, many researchers showed that enhanced synaptic strength was correlated with memory. Nonetheless, the causal relationship between these enduring changes in synaptic connectivity with a specific, behaviorally identifiable memory at the level of the cell ensemble (an engram) awaited further advances in experimental technologies.


The resurgence in research examining engrams may be linked to two complementary studies that applied intervention strategies to target individual neurons in an engram supporting a specific memory in mice. One study showed that ablating the subset of lateral amygdala neurons allocated to a putative engram disrupted subsequent memory retrieval (loss of function). The second study showed that artificially reactivating a subset of hippocampal dentate gyrus neurons that were active during a fearful experience (and, therefore, part of a putative engram) induced memory retrieval in the absence of external retrieval cues (gain of function). Subsequent findings from many labs used similar strategies to identify engrams in other brain regions supporting different types of memory.
There are several recent advances in engram research. First, eligible neurons within a given brain region were shown to compete for allocation to an engram, and relative neuronal excitability determines the outcome of this competition. Excitability-based competition also guides the organization of multiple engrams in the brain and determines how these engrams interact. Second, research examining the nature of the off-line, enduring changes in engram cells (neurons that are critical components of an engram) found increased synaptic strength and spine density in these neurons as well as preferential connectivity to other downstream engram cells. Therefore, both increased intrinsic excitability and synaptic plasticity work hand in hand to form engrams, and these mechanisms are also implicated in memory consolidation and retrieval processes. Third, it is now possible to artificially manipulate memory encoding and retrieval processes to generate false memories, or even create a memory in mice without any natural sensory experience (implantation of a memory for an experience that did not occur). Fourth, “silent” engrams were discovered in amnesic mice; artificial reactivation of silent engrams induces memory retrieval, whereas natural cues cannot. Endogenous engram silencing may contribute to the change in memory over time (e.g., systems memory consolidation) or in different circumstances (e.g., fear memory extinction). These findings suggest that once formed, an engram may exist in different states (from silent to active) on the basis of their retrievability. Although initial engram studies focused on single brain regions, an emerging concept is that a given memory is supported by an engram complex, composed of functionally connected engram cell ensembles dispersed across multiple brain regions, with each ensemble supporting a component of the overall memory.


The ability to identify and manipulate engram cells and brainwide engram complexes has introduced an exciting new era of memory research. The findings from many labs are beginning to define an engram as the basic unit of memory. However, many questions remain. In the short term, it is critical to characterize how information is stored in an engram, including how engram architecture affects memory quality, strength, and precision; how multiple engrams interact; how engrams change over time; and the role of engram silencing in these processes. The long-term goal of engram research is to leverage the fundamental findings from rodent engram studies to understand how information is acquired, stored, and used in humans and facilitate the treatment of human memory, or other information-processing, disorders. The development of low- to noninvasive technology may enable new human therapies based on the growing knowledge of engrams in rodents.
An engram cell alongside a nonengram cell.
Within the hippocampus, dentate gyrus cells were filled with biocytin (white) to examine morphology. Engram cells active during context fear conditioning were engineered to express the red fluorescent protein mCherry, which appears pink owing to overlap with biocytin signals. Axons of the perforant path (green) express the excitatory opsin channelrhodopsin 2 and a fluorescent marker (enhanced yellow fluorescent protein). The upper blade of the dentate gyrus granule cell layer is revealed by the nuclear stain 4′,6-diamidino-2-phenylindole (DAPI, blue).


In 1904, Richard Semon introduced the term “engram” to describe the neural substrate for storing memories. An experience, Semon proposed, activates a subset of cells that undergo off-line, persistent chemical and/or physical changes to become an engram. Subsequent reactivation of this engram induces memory retrieval. Although Semon’s contributions were largely ignored in his lifetime, new technologies that allow researchers to image and manipulate the brain at the level of individual neurons has reinvigorated engram research. We review recent progress in studying engrams, including an evaluation of evidence for the existence of engrams, the importance of intrinsic excitability and synaptic plasticity in engrams, and the lifetime of an engram. Together, these findings are beginning to define an engram as the basic unit of memory.

Get full access to this article

View all available purchase options and get full access to this article.

References and notes

Y. Dudai, The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86 (2004). 10.1146/annurev.psych.55.090902.142050
D. L. Schacter, Constructive memory: Past and future. Dialogues Clin. Neurosci. 14, 7–18 (2012). 22577300
D. L. Schacter, Stranger Behind the Engram: Theories of Memory and the Psychology of Science (Erlbaum Associates, 1982).
D. L. Schacter, J. E. Eich, E. Tulving, Richard Semon’s theory of memory. J. Verbal Learn. Verbal Behav. 17, 721–743 (1978). 10.1016/S0022-5371(78)90443-7
R. Semon, The Mneme (G. Allen & Unwin, 1921).
R. Semon, Die Mneme als erhaltendes Prinzip im Wechsel des organischen Geschehens, W. Engelmann, Ed. (Leipzig, 1904).
R. W. Semon, Mnemic Psychology (G. Allen & Unwin, 1923).
S. A. Josselyn, S. Köhler, P. W. Frankland, Finding the engram. Nat. Rev. Neurosci. 16, 521–534 (2015). 10.1038/nrn4000
S. A. Josselyn, S. Köhler, P. W. Frankland, Heroes of the engram. J. Neurosci. 37, 4647–4657 (2017). 10.1523/JNEUROSCI.0056-17.2017
S. Tonegawa, X. Liu, S. Ramirez, R. Redondo, Memory engram cells have come of age. Neuron 87, 918–931 (2015). 10.1016/j.neuron.2015.08.002
D. L. Schacter, Forgotten Ideas, Neglected Pioneers: Richard Semon and the Story of Memory (Psychology Press, 2001).
K. S. Lashley, in Society of Experimental Biology Symposium, No. 4: Psychological Mechanisms in Animal Behavior, J. F. Danielli, R. Brown, Eds. (Academic Press, 1950), pp. 454–482.
K. S. Lashley, Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain (Dover Books on Psychology, vol. T1038, Dover Publications, 1963).
K. S. Lashley, Mass action in cerebral function. Science 73, 245–254 (1931). 10.1126/science.73.1888.245
D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory (Wiley, 1949).
C. J. Shatz, The developing brain. Sci. Am. 267, 60–67 (1992). 10.1038/scientificamerican0992-60
D. Marr, Simple memory: A theory for archicortex. Philos. Trans. R. Soc. Lond. Ser. B 262, 23–81 (1971). 10.1098/rstb.1971.0078
M. R. Hunsaker, R. P. Kesner, The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory. Neurosci. Biobehav. Rev. 37, 36–58 (2013). 10.1016/j.neubiorev.2012.09.014
J. J. Knierim, J. P. Neunuebel, Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiol. Learn. Mem. 129, 38–49 (2016). 10.1016/j.nlm.2015.10.008
M. Moscovitch, in Science of Memory: Concepts, H. L. I. Roediger, Y. Dudai, S. M. Fitzpatrick, Eds. (Oxford Univ. Press, 2007), pp. 17–29.
S. J. Martin, P. D. Grimwood, R. G. Morris, Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000). 10.1146/annurev.neuro.23.1.649
S. J. Martin, R. G. Morris, New life in an old idea: The synaptic plasticity and memory hypothesis revisited. Hippocampus 12, 609–636 (2002). 10.1002/hipo.10107
D. Yu, Y. Tan, M. Chakraborty, S. Tomchik, R. L. Davis, Elongator complex is required for long-term olfactory memory formation in Drosophila. Learn. Mem. 25, 183–196 (2018). 10.1101/lm.046557.117
D. Owald, J. Felsenberg, C. B. Talbot, G. Das, E. Perisse, W. Huetteroth, S. Waddell, Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron 86, 417–427 (2015). 10.1016/j.neuron.2015.03.025
E. Perisse, D. Owald, O. Barnstedt, C. B. Talbot, W. Huetteroth, S. Waddell, Aversive learning and appetitive motivation toggle feed-forward inhibition in the Drosophila mushroom body. Neuron 90, 1086–1099 (2016). 10.1016/j.neuron.2016.04.034
J. Felsenberg, P. F. Jacob, T. Walker, O. Barnstedt, A. J. Edmondson-Stait, M. W. Pleijzier, N. Otto, P. Schlegel, N. Sharifi, E. Perisse, C. S. Smith, J. S. Lauritzen, M. Costa, G. S. X. E. Jefferis, D. D. Bock, S. Waddell, Integration of parallel opposing memories underlies memory extinction. Cell 175, 709–722.e15 (2018). 10.1016/j.cell.2018.08.021
T. Miyashita, E. Kikuchi, J. Horiuchi, M. Saitoe, Long-term memory engram cells are established by c-Fos/CREB transcriptional cycling. Cell Rep. 25, 2716–2728.e3 (2018). 10.1016/j.celrep.2018.11.022
J. Z. Young, Computation in the learning system of cephalopods. Biol. Bull. 180, 200–208 (1991). 10.2307/1542389
J. Z. Young, in Cephalopod Neurobiology: Neuroscience Studies in Squid, Octopus and Cuttlefish, N. J. Abbott, R. Williamson, L. Maddock, Eds. (Oxford Univ. Press, 1995), pp. 431–443.
A. Bédécarrats, S. Chen, K. Pearce, D. Cai, D. L. Glanzman, RNA from trained Aplysia can induce an epigenetic engram for long-term sensitization in untrained Aplysia. eNeuro 5, ENEURO.0038-0018.2018 (2018). 10.1523/ENEURO.0038-18.2018
T. J. Carew, R. D. Hawkins, T. W. Abrams, E. R. Kandel, A test of Hebb’s postulate at identified synapses which mediate classical conditioning in Aplysia. J. Neurosci. 4, 1217–1224 (1984). 10.1523/JNEUROSCI.04-05-01217.1984
R. Menzel, Searching for the memory trace in a mini-brain, the honeybee. Learn. Mem. 8, 53–62 (2001). 10.1101/lm.38801
D. L. Alkon, Calcium-mediated reduction of ionic currents: A biophysical memory trace. Science 226, 1037–1045 (1984). 10.1126/science.6093258
D. A. Mccormick, D. G. Lavond, G. A. Clark, R. E. Kettner, C. E. Rising, R. F. Thompson, The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bull. Psychon. Soc. 18, 103–105 (1981). 10.3758/BF03333573
J. M. Fuster, J. P. Jervey, Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212, 952–955 (1981). 10.1126/science.7233192
Y. Miyashita, Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335, 817–820 (1988). 10.1038/335817a0
M. E. Greenberg, E. B. Ziff, Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311, 433–438 (1984). 10.1038/311433a0
T. Curran, J. I. Morgan, Superinduction of c-fos by nerve growth factor in the presence of peripherally active benzodiazepines. Science 229, 1265–1268 (1985). 10.1126/science.4035354
J. F. Guzowski, B. L. McNaughton, C. A. Barnes, P. F. Worley, Imaging neural activity with temporal and cellular resolution using FISH. Curr. Opin. Neurobiol. 11, 579–584 (2001). 10.1016/S0959-4388(00)00252-X
C. A. Denny, M. A. Kheirbek, E. L. Alba, K. F. Tanaka, R. A. Brachman, K. B. Laughman, N. K. Tomm, G. F. Turi, A. Losonczy, R. Hen, Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83, 189–201 (2014). 10.1016/j.neuron.2014.05.018
L. G. Reijmers, B. L. Perkins, N. Matsuo, M. Mayford, Localization of a stable neural correlate of associative memory. Science 317, 1230–1233 (2007). 10.1126/science.1143839
L. A. DeNardo, C. D. Liu, W. E. Allen, E. L. Adams, D. Friedmann, L. Fu, C. J. Guenthner, M. Tessier-Lavigne, L. Luo, Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat. Neurosci. 22, 460–469 (2019). 10.1038/s41593-018-0318-7
A. T. Sørensen, Y. A. Cooper, M. V. Baratta, F.-J. Weng, Y. Zhang, K. Ramamoorthi, R. Fropf, E. LaVerriere, J. Xue, A. Young, C. Schneider, C. R. Gøtzsche, M. Hemberg, J. C. P. Yin, S. F. Maier, Y. Lin, A robust activity marking system for exploring active neuronal ensembles. eLife 5, e13918 (2016). 10.7554/eLife.13918
M. S. Fanselow, L. S. Lester, in Evolution and Learning, R. C. Bolles, M. D. Beecher, Eds. (Lawrence Erlbaum Associates, Inc., 1988), pp. 185–212.
K. K. Tayler, K. Z. Tanaka, L. G. Reijmers, B. J. Wiltgen, Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr. Biol. 23, 99–106 (2013). 10.1016/j.cub.2012.11.019
S. Ramirez, X. Liu, P.-A. Lin, J. Suh, M. Pignatelli, R. L. Redondo, T. J. Ryan, S. Tonegawa, Creating a false memory in the hippocampus. Science 341, 387–391 (2013). 10.1126/science.1239073
W. Deng, M. Mayford, F. H. Gage, Selection of distinct populations of dentate granule cells in response to inputs as a mechanism for pattern separation in mice. eLife 2, e00312 (2013). 10.7554/eLife.00312
K. Z. Tanaka, A. Pevzner, A. B. Hamidi, Y. Nakazawa, J. Graham, B. J. Wiltgen, Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347–354 (2014). 10.1016/j.neuron.2014.09.037
M. Zelikowsky, S. Hersman, M. K. Chawla, C. A. Barnes, M. S. Fanselow, Neuronal ensembles in amygdala, hippocampus, and prefrontal cortex track differential components of contextual fear. J. Neurosci. 34, 8462–8466 (2014). 10.1523/JNEUROSCI.3624-13.2014
Y. Nakazawa, A. Pevzner, K. Z. Tanaka, B. J. Wiltgen, Memory retrieval along the proximodistal axis of CA1. Hippocampus 26, 1140–1148 (2016). 10.1002/hipo.22596
T. Kitamura, S. K. Ogawa, D. S. Roy, T. Okuyama, M. D. Morrissey, L. M. Smith, R. L. Redondo, S. Tonegawa, Engrams and circuits crucial for systems consolidation of a memory. Science 356, 73–78 (2017). 10.1126/science.aam6808
O. Khalaf, S. Resch, L. Dixsaut, V. Gorden, L. Glauser, J. Gräff, Reactivation of recall-induced neurons contributes to remote fear memory attenuation. Science 360, 1239–1242 (2018). 10.1126/science.aas9875
A. F. Lacagnina, E. T. Brockway, C. R. Crovetti, F. Shue, M. J. McCarty, K. P. Sattler, S. C. Lim, S. L. Santos, C. A. Denny, M. R. Drew, Distinct hippocampal engrams control extinction and relapse of fear memory. Nat. Neurosci. 22, 753–761 (2019). 10.1038/s41593-019-0361-z
H. Nomura, C. Teshirogi, D. Nakayama, M. Minami, Y. Ikegaya, Prior observation of fear learning enhances subsequent self-experienced fear learning with an overlapping neuronal ensemble in the dorsal hippocampus. Mol. Brain 12, 21 (2019). 10.1186/s13041-019-0443-6
S. Trouche, J. M. Sasaki, T. Tu, L. G. Reijmers, Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses. Neuron 80, 1054–1065 (2013). 10.1016/j.neuron.2013.07.047
A. Nonaka, T. Toyoda, Y. Miura, N. Hitora-Imamura, M. Naka, M. Eguchi, S. Yamaguchi, Y. Ikegaya, N. Matsuki, H. Nomura, Synaptic plasticity associated with a memory engram in the basolateral amygdala. J. Neurosci. 34, 9305–9309 (2014). 10.1523/JNEUROSCI.4233-13.2014
H. Xie, Y. Liu, Y. Zhu, X. Ding, Y. Yang, J.-S. Guan, In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proc. Natl. Acad. Sci. U.S.A. 111, 2788–2793 (2014). 10.1073/pnas.1316808111
J. H. Han, S. A. Kushner, A. P. Yiu, H.-L. Hsiang, T. Buch, A. Waisman, B. Bontempi, R. L. Neve, P. W. Frankland, S. A. Josselyn, Selective erasure of a fear memory. Science 323, 1492–1496 (2009). 10.1126/science.1164139
Y. Dong, T. Green, D. Saal, H. Marie, R. Neve, E. J. Nestler, R. C. Malenka, CREB modulates excitability of nucleus accumbens neurons. Nat. Neurosci. 9, 475–477 (2006). 10.1038/nn1661
H. Marie, W. Morishita, X. Yu, N. Calakos, R. C. Malenka, Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron 45, 741–752 (2005). 10.1016/j.neuron.2005.01.039
M. H. Han, C. A. Bolaños, T. A. Green, V. G. Olson, R. L. Neve, R. J. Liu, G. K. Aghajanian, E. J. Nestler, Role of cAMP response element-binding protein in the rat locus ceruleus: Regulation of neuronal activity and opiate withdrawal behaviors. J. Neurosci. 26, 4624–4629 (2006). 10.1523/JNEUROSCI.4701-05.2006
M. Lopez de Armentia, D. Jancic, R. Olivares, J. M. Alarcon, E. R. Kandel, A. Barco, cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons. J. Neurosci. 27, 13909–13918 (2007). 10.1523/JNEUROSCI.3850-07.2007
Y. Zhou, J. Won, M. G. Karlsson, M. Zhou, T. Rogerson, J. Balaji, R. Neve, P. Poirazi, A. J. Silva, CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat. Neurosci. 12, 1438–1443 (2009). 10.1038/nn.2405
E. Benito, A. Barco, CREB’s control of intrinsic and synaptic plasticity: Implications for CREB-dependent memory models. Trends Neurosci. 33, 230–240 (2010). 10.1016/j.tins.2010.02.001
D. Sargin, V. Mercaldo, A. P. Yiu, G. Higgs, J.-H. Han, P. W. Frankland, S. A. Josselyn, CREB regulates spine density of lateral amygdala neurons: Implications for memory allocation. Front. Behav. Neurosci. 7, 209 (2013). 10.3389/fnbeh.2013.00209
H. L. Hsiang, J. R. Epp, M. C. van den Oever, C. Yan, A. J. Rashid, N. Insel, L. Ye, Y. Niibori, K. Deisseroth, P. W. Frankland, S. A. Josselyn, Manipulating a “cocaine engram” in mice. J. Neurosci. 34, 14115–14127 (2014). 10.1523/JNEUROSCI.3327-14.2014
E. Koya, S. A. Golden, B. K. Harvey, D. H. Guez-Barber, A. Berkow, D. E. Simmons, J. M. Bossert, S. G. Nair, J. L. Uejima, M. T. Marin, T. B. Mitchell, D. Farquhar, S. C. Ghosh, B. J. Mattson, B. T. Hope, Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat. Neurosci. 12, 1069–1073 (2009). 10.1038/nn.2364
P. M. Milner, Cell assemblies: Whose idea? Psycholoquy 10, 1 (1999).
X. Liu, S. Ramirez, P. T. Pang, C. B. Puryear, A. Govindarajan, K. Deisseroth, S. Tonegawa, Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012). 10.1038/nature11028
E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005). 10.1038/nn1525
T. J. Ryan, D. S. Roy, M. Pignatelli, A. Arons, S. Tonegawa, Engram cells retain memory under retrograde amnesia. Science 348, 1007–1013 (2015). 10.1126/science.aaa5542
B. N. Armbruster, X. Li, M. H. Pausch, S. Herlitze, B. L. Roth, Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. U.S.A. 104, 5163–5168 (2007). 10.1073/pnas.0700293104
C. D. Nichols, B. L. Roth, Engineered G-protein coupled receptors are powerful tools to investigate biological processes and behaviors. Front. Mol. Neurosci. 2, 16 (2009). 10.3389/neuro.02.016.2009
K. K. Cowansage, T. Shuman, B. C. Dillingham, A. Chang, P. Golshani, M. Mayford, Direct reactivation of a coherent neocortical memory of context. Neuron 84, 432–441 (2014). 10.1016/j.neuron.2014.09.022
R. L. Redondo, J. Kim, A. L. Arons, S. Ramirez, X. Liu, S. Tonegawa, Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513, 426–430 (2014). 10.1038/nature13725
A. P. Yiu, V. Mercaldo, C. Yan, B. Richards, A. J. Rashid, H.-L. L. Hsiang, J. Pressey, V. Mahadevan, M. M. Tran, S. A. Kushner, M. A. Woodin, P. W. Frankland, S. A. Josselyn, Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83, 722–735 (2014). 10.1016/j.neuron.2014.07.017
T. Rogerson, D. J. Cai, A. Frank, Y. Sano, J. Shobe, M. F. Lopez-Aranda, A. J. Silva, Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15, 157–169 (2014). 10.1038/nrn3667
J. Kim, J. T. Kwon, H. S. Kim, S. A. Josselyn, J. H. Han, Memory recall and modifications by activating neurons with elevated CREB. Nat. Neurosci. 17, 65–72 (2014). 10.1038/nn.3592
K. Abdou, M. Shehata, K. Choko, H. Nishizono, M. Matsuo, S. I. Muramatsu, K. Inokuchi, Synapse-specific representation of the identity of overlapping memory engrams. Science 360, 1227–1231 (2018). 10.1126/science.aat3810
A. Guskjolen, J. W. Kenney, J. de la Parra, B. A. Yeung, S. A. Josselyn, P. W. Frankland, Recovery of “lost” infant memories in mice. Curr. Biol. 28, 2283–2290.e3 (2018). 10.1016/j.cub.2018.05.059
K. Ghandour, N. Ohkawa, C. C. A. Fung, H. Asai, Y. Saitoh, T. Takekawa, R. Okubo-Suzuki, S. Soya, H. Nishizono, M. Matsuo, M. Osanai, M. Sato, M. Ohkura, J. Nakai, Y. Hayashi, T. Sakurai, T. Kitamura, T. Fukai, K. Inokuchi, Orchestrated ensemble activities constitute a hippocampal memory engram. Nat. Commun. 10, 2637 (2019). 10.1038/s41467-019-10683-2
I. Pavlov, Conditioned Reflexes (Oxford Univ. Press, 1927).
D. L. Schacter, E. F. Loftus, Memory and law: What can cognitive neuroscience contribute? Nat. Neurosci. 16, 119–123 (2013). 10.1038/nn.3294
A. R. Garner, D. C. Rowland, S. Y. Hwang, K. Baumgaertel, B. L. Roth, C. Kentros, M. Mayford, Generation of a synthetic memory trace. Science 335, 1513–1516 (2012). 10.1126/science.1214985
N. Ohkawa, Y. Saitoh, A. Suzuki, S. Tsujimura, E. Murayama, S. Kosugi, H. Nishizono, M. Matsuo, Y. Takahashi, M. Nagase, Y. K. Sugimura, A. M. Watabe, F. Kato, K. Inokuchi, Artificial association of pre-stored information to generate a qualitatively new memory. Cell Rep. 11, 261–269 (2015). 10.1016/j.celrep.2015.03.017
G. Vetere, L. M. Tran, S. Moberg, P. E. Steadman, L. Restivo, F. G. Morrison, K. J. Ressler, S. A. Josselyn, P. W. Frankland, Memory formation in the absence of experience. Nat. Neurosci. 22, 933–940 (2019). 10.1038/s41593-019-0389-0
J. A. Kauer, R. C. Malenka, Synaptic plasticity and addiction. Nat. Rev. Neurosci. 8, 844–858 (2007). 10.1038/nrn2234
J. H. Choi, S.-E. Sim, J. I. Kim, D. I. Choi, J. Oh, S. Ye, J. Lee, T. Kim, H.-G. Ko, C.-S. Lim, B.-K. Kaang, Interregional synaptic maps among engram cells underlie memory formation. Science 360, 430–435 (2018). 10.1126/science.aas9204
L. A. Gouty-Colomer, B. Hosseini, I. M. Marcelo, J. Schreiber, D. E. Slump, S. Yamaguchi, A. R. Houweling, D. Jaarsma, Y. Elgersma, S. A. Kushner, Arc expression identifies the lateral amygdala fear memory trace. Mol. Psychiatry 21, 364–375 (2016). 10.1038/mp.2015.18
A. Hayashi-Takagi, S. Yagishita, M. Nakamura, F. Shirai, Y. I. Wu, A. L. Loshbaugh, B. Kuhlman, K. M. Hahn, H. Kasai, Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525, 333–338 (2015). 10.1038/nature15257
S. Park, E. E. Kramer, V. Mercaldo, A. J. Rashid, N. Insel, P. W. Frankland, S. A. Josselyn, Neuronal allocation to a hippocampal engram. Neuropsychopharmacology 41, 2987–2993 (2016). 10.1038/npp.2016.73
M. J. Sekeres, V. Mercaldo, B. Richards, D. Sargin, V. Mahadevan, M. A. Woodin, P. W. Frankland, S. A. Josselyn, Increasing CRTC1 function in the dentate gyrus during memory formation or reactivation increases memory strength without compromising memory quality. J. Neurosci. 32, 17857–17868 (2012). 10.1523/JNEUROSCI.1419-12.2012
M. J. Sekeres, R. L. Neve, P. W. Frankland, S. A. Josselyn, Dorsal hippocampal CREB is both necessary and sufficient for spatial memory. Learn. Mem. 17, 280–283 (2010). 10.1101/lm.1785510
T. Sacco, B. Sacchetti, Role of secondary sensory cortices in emotional memory storage and retrieval in rats. Science 329, 649–656 (2010). 10.1126/science.1183165
W. B. Kim, J. H. Cho, Synaptic targeting of double-projecting ventral CA1 hippocampal neurons to the medial prefrontal cortex and basal amygdala. J. Neurosci. 37, 4868–4882 (2017). 10.1523/JNEUROSCI.3579-16.2017
Y. Yang, D. Q. Liu, W. Huang, J. Deng, Y. Sun, Y. Zuo, M. M. Poo, Selective synaptic remodeling of amygdalocortical connections associated with fear memory. Nat. Neurosci. 19, 1348–1355 (2016). 10.1038/nn.4370
A. L. Wheeler, C. M. Teixeira, A. H. Wang, X. Xiong, N. Kovacevic, J. P. Lerch, A. R. McIntosh, J. Parkinson, P. W. Frankland, Identification of a functional connectome for long-term fear memory in mice. PLOS Comput. Biol. 9, e1002853 (2013). 10.1371/journal.pcbi.1002853
G. Vetere, J. W. Kenney, L. M. Tran, F. Xia, P. E. Steadman, J. Parkinson, S. A. Josselyn, P. W. Frankland, Chemogenetic interrogation of a brain-wide fear memory network in mice. Neuron 94, 363–374.e4 (2017). 10.1016/j.neuron.2017.03.037
D. S. Roy, Y.-G. Park, S. K. Ogawa, J. H. Cho, H. Choi, L. Kamensky, J. Martin, K. Chung, S. Tonegawa, Brain-wide mapping of contextual fear memory engram ensembles supports the dispersed engram complex hypothesis. bioRxiv 668483 [Preprint]. 12 June 2019. .10.1101/668483
P. W. Frankland, B. Bontempi, L. E. Talton, L. Kaczmarek, A. J. Silva, The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881–883 (2004). 10.1126/science.1094804
K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, K. Deisseroth, Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013). 10.1038/nature12107
Y. G. Park, C. H. Sohn, R. Chen, M. McCue, D. H. Yun, G. T. Drummond, T. Ku, N. B. Evans, H. C. Oak, W. Trieu, H. Choi, X. Jin, V. Lilascharoen, J. Wang, M. C. Truttmann, H. W. Qi, H. L. Ploegh, T. R. Golub, S. C. Chen, M. P. Frosch, H. J. Kulik, B. K. Lim, K. Chung, Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat. Biotechnol. (2018). 30556815
J. O’Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971). 10.1016/0006-8993(71)90358-1
V. Ego-Stengel, M. A. Wilson, Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10 (2010). 19816984
G. Girardeau, K. Benchenane, S. I. Wiener, G. Buzsáki, M. B. Zugaro, Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009). 10.1038/nn.2384
T. J. McHugh, M. W. Jones, J. J. Quinn, N. Balthasar, R. Coppari, J. K. Elmquist, B. B. Lowell, M. S. Fanselow, M. A. Wilson, S. Tonegawa, Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317, 94–99 (2007). 10.1126/science.1140263
K. Z. Tanaka, H. He, A. Tomar, K. Niisato, A. J. Y. Huang, T. J. McHugh, The hippocampal engram maps experience but not place. Science 361, 392–397 (2018). 10.1126/science.aat5397
M. A. Wilson, B. L. McNaughton, Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994). 10.1126/science.8036517
S. Diekelmann, J. Born, The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010). 10.1038/nrn2762
H. R. Joo, L. M. Frank, The hippocampal sharp wave-ripple in memory retrieval for immediate use and consolidation. Nat. Rev. Neurosci. 19, 744–757 (2018). 10.1038/s41583-018-0077-1
G. Buzsáki, Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 25, 1073–1188 (2015). 10.1002/hipo.22488
M. F. Carr, S. P. Jadhav, L. M. Frank, Hippocampal replay in the awake state: A potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011). 10.1038/nn.2732
H. S. Kudrimoti, C. A. Barnes, B. L. McNaughton, Reactivation of hippocampal cell assemblies: Effects of behavioral state, experience, and EEG dynamics. J. Neurosci. 19, 4090–4101 (1999). 10.1523/JNEUROSCI.19-10-04090.1999
A. G. Siapas, M. A. Wilson, Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128 (1998). 10.1016/S0896-6273(00)80629-7
F. Xia, B. A. Richards, M. M. Tran, S. A. Josselyn, K. Takehara-Nishiuchi, P. W. Frankland, Parvalbumin-positive interneurons mediate neocortical-hippocampal interactions that are necessary for memory consolidation. eLife 6, e27868 (2017). 10.7554/eLife.27868
A. I. Abbas, M. J. M. Sundiang, B. Henoch, M. P. Morton, S. S. Bolkan, A. J. Park, A. Z. Harris, C. Kellendonk, J. A. Gordon, Somatostatin interneurons facilitate hippocampal-prefrontal synchrony and prefrontal spatial encoding. Neuron 100, 926–939.e3 (2018). 10.1016/j.neuron.2018.09.029
D. Dupret, J. O’Neill, B. Pleydell-Bouverie, J. Csicsvari, The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010). 10.1038/nn.2599
S. P. Jadhav, C. Kemere, P. W. German, L. M. Frank, Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012). 10.1126/science.1217230
S. Lewis, Sleep: Ever-decreasing ripples. Nat. Rev. Neurosci. 19, 184 (2018). 29515191
H. Norimoto, K. Makino, M. Gao, Y. Shikano, K. Okamoto, T. Ishikawa, T. Sasaki, H. Hioki, S. Fujisawa, Y. Ikegaya, Hippocampal ripples down-regulate synapses. Science 359, 1524–1527 (2018). 10.1126/science.aao0702
S. A. Josselyn, P. W. Frankland, Memory allocation: Mechanisms and function. Annu. Rev. Neurosci. 41, 389–413 (2018). 10.1146/annurev-neuro-080317-061956
J. H. Han, S. A. Kushner, A. P. Yiu, C. J. Cole, A. Matynia, R. A. Brown, R. L. Neve, J. F. Guzowski, A. J. Silva, S. A. Josselyn, Neuronal competition and selection during memory formation. Science 316, 457–460 (2007). 10.1126/science.1139438
J. H. Han, A. P. Yiu, C. J. Cole, H.-L. Hsiang, R. L. Neve, S. A. Josselyn, Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. Learn. Mem. 15, 443–453 (2008). 10.1101/lm.993608
S. A. Josselyn, Continuing the search for the engram: Examining the mechanism of fear memories. J. Psychiatry Neurosci. 35, 221–228 (2010). 10.1503/jpn.100015
A. J. Silva, Y. Zhou, T. Rogerson, J. Shobe, J. Balaji, Molecular and cellular approaches to memory allocation in neural circuits. Science 326, 391–395 (2009). 10.1126/science.1174519
M. R. Matos, E. Visser, I. Kramvis, R. J. van der Loo, T. Gebuis, R. Zalm, P. Rao-Ruiz, H. D. Mansvelder, A. B. Smit, M. C. van den Oever, Memory strength gates the involvement of a CREB-dependent cortical fear engram in remote memory. Nat. Commun. 10, 2315 (2019). 10.1038/s41467-019-10266-1
Y. Sano, J. L. Shobe, M. Zhou, S. Huang, T. Shuman, D. J. Cai, P. Golshani, M. Kamata, A. J. Silva, CREB regulates memory allocation in the insular cortex. Curr. Biol. 24, 2833–2837 (2014). 10.1016/j.cub.2014.10.018
R. Czajkowski, B. Jayaprakash, B. Wiltgen, T. Rogerson, M. C. Guzman-Karlsson, A. L. Barth, J. T. Trachtenberg, A. J. Silva, Encoding and storage of spatial information in the retrosplenial cortex. Proc. Natl. Acad. Sci. U.S.A. 111, 8661–8666 (2014). 10.1073/pnas.1313222111
G. B. Choi, D. D. Stettler, B. R. Kallman, S. T. Bhaskar, A. Fleischmann, R. Axel, Driving opposing behaviors with ensembles of piriform neurons. Cell 146, 1004–1015 (2011). 10.1016/j.cell.2011.07.041
D. Kim, D. Paré, S. S. Nair, Assignment of model amygdala neurons to the fear memory trace depends on competitive synaptic interactions. J. Neurosci. 33, 14354–14358 (2013). 10.1523/JNEUROSCI.2430-13.2013
D. Kim, D. Paré, S. S. Nair, Mechanisms contributing to the induction and storage of Pavlovian fear memories in the lateral amygdala. Learn. Mem. 20, 421–430 (2013). 10.1101/lm.030262.113
D. Kim, P. Samarth, F. Feng, D. Pare, S. S. Nair, Synaptic competition in the lateral amygdala and the stimulus specificity of conditioned fear: A biophysical modeling study. Brain Struct. Funct. 221, 2163–2182 (2016). 10.1007/s00429-015-1037-4
D. L. Alkon, Changes of membrane currents during learning. J. Exp. Biol. 112, 95–112 (1984). 6150967
D. L. Alkon, I. Lederhendler, J. J. Shoukimas, Primary changes of membrane currents during retention of associative learning. Science 215, 693–695 (1982). 10.1126/science.7058334
K. P. Scholz, J. H. Byrne, Long-term sensitization in Aplysia: Biophysical correlates in tail sensory neurons. Science 235, 685–687 (1987). 10.1126/science.2433766
M. A. Wilson, B. L. McNaughton, Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993). 10.1126/science.8351520
J. D. Cohen, M. Bolstad, A. K. Lee, Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. eLife 6, e23040 (2017). 10.7554/eLife.23040
J. Epsztein, M. Brecht, A. K. Lee, Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120 (2011). 10.1016/j.neuron.2011.03.006
P. D. Rich, H. P. Liaw, A. K. Lee, Large environments reveal the statistical structure governing hippocampal representations. Science 345, 814–817 (2014). 10.1126/science.1255635
D. Lee, B. J. Lin, A. K. Lee, Hippocampal place fields emerge upon single-cell manipulation of excitability during behavior. Science 337, 849–853 (2012). 10.1126/science.1221489
J. P. Rickgauer, K. Deisseroth, D. W. Tank, Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields. Nat. Neurosci. 17, 1816–1824 (2014). 10.1038/nn.3866
J.-P. Changeux, A. Danchin, Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264, 705–712 (1976). 10.1038/264705a0
J. Z. Young, Learning as a process of selection and amplification. J. R. Soc. Med. 72, 801–814 (1979). 10.1177/014107687907201103
P. Kanerva, Sparse Distributed Memory (MIT Press, 1988).
D. J. Morrison, A. J. Rashid, A. P. Yiu, C. Yan, P. W. Frankland, S. A. Josselyn, Parvalbumin interneurons constrain the size of the lateral amygdala engram. Neurobiol. Learn. Mem. 135, 91–99 (2016). 10.1016/j.nlm.2016.07.007
P. Rao-Ruiz, J. Yu, S. A. Kushner, S. A. Josselyn, Neuronal competition: Microcircuit mechanisms define the sparsity of the engram. Curr. Opin. Neurobiol. 54, 163–170 (2019). 10.1016/j.conb.2018.10.013
T. Stefanelli, C. Bertollini, C. Lüscher, D. Muller, P. Mendez, Hippocampal somatostatin interneurons control the size of neuronal memory ensembles. Neuron 89, 1074–1085 (2016). 10.1016/j.neuron.2016.01.024
H. C. Barron, T. P. Vogels, T. E. Behrens, M. Ramaswami, Inhibitory engrams in perception and memory. Proc. Natl. Acad. Sci. U.S.A. 114, 6666–6674 (2017). 28611219
H. C. Barron, T. P. Vogels, U. E. Emir, T. R. Makin, J. O’Shea, S. Clare, S. Jbabdi, R. J. Dolan, T. E. J. Behrens, Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories. Neuron 90, 191–203 (2016). 10.1016/j.neuron.2016.02.031
G. Hennequin, E. J. Agnes, T. P. Vogels, Inhibitory plasticity: Balance, control, and codependence. Annu. Rev. Neurosci. 40, 557–579 (2017). 10.1146/annurev-neuro-072116-031005
S. Maren, C. R. Ferrario, K. A. Corcoran, T. J. Desmond, K. A. Frey, Protein synthesis in the amygdala, but not the auditory thalamus, is required for consolidation of Pavlovian fear conditioning in rats. Eur. J. Neurosci. 18, 3080–3088 (2003). 10.1111/j.1460-9568.2003.03063.x
G. E. Schafe, J. E. LeDoux, Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J. Neurosci. 20, RC96 (2000). 10.1523/JNEUROSCI.20-18-j0003.2000
P. J. Hernandez, T. Abel, The role of protein synthesis in memory consolidation: Progress amid decades of debate. Neurobiol. Learn. Mem. 89, 293–311 (2008). 10.1016/j.nlm.2007.09.010
G. E. Schafe, N. V. Nadel, G. M. Sullivan, A. Harris, J. E. LeDoux, Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn. Mem. 6, 97–110 (1999). 10327235
S. A. Josselyn, S. Kida, A. J. Silva, Inducible repression of CREB function disrupts amygdala-dependent memory. Neurobiol. Learn. Mem. 82, 159–163 (2004). 10.1016/j.nlm.2004.05.008
Y. Dudai, M. Eisenberg, Rites of passage of the engram: Reconsolidation and the lingering consolidation hypothesis. Neuron 44, 93–100 (2004). 10.1016/j.neuron.2004.09.003
S. H. Wang, R. G. Morris, Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu. Rev. Psychol. 61, 49–79, C1–C4 (2010). 10.1146/annurev.psych.093008.100523
P. W. Frankland, B. Bontempi, The organization of recent and remote memories. Nat. Rev. Neurosci. 6, 119–130 (2005). 10.1038/nrn1607
B. J. Wiltgen, R. A. M. Brown, L. E. Talton, A. J. Silva, New circuits for old memories: The role of the neocortex in consolidation. Neuron 44, 101–108 (2004). 10.1016/j.neuron.2004.09.015
D. S. Roy, S. Muralidhar, L. M. Smith, S. Tonegawa, Silent memory engrams as the basis for retrograde amnesia. Proc. Natl. Acad. Sci. U.S.A. 114, E9972–E9979 (2017). 10.1073/pnas.1714248114
S. Nabavi, R. Fox, C. D. Proulx, J. Y. Lin, R. Y. Tsien, R. Malinow, Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014). 10.1038/nature13294
M. H. Monfils, G. C. Teskey, Induction of long-term depression is associated with decreased dendritic length and spine density in layers III and V of sensorimotor neocortex. Synapse 53, 114–121 (2004). 10.1002/syn.20039
Q. Zhou, K. J. Homma, M. M. Poo, Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004). 10.1016/j.neuron.2004.11.011
J. N. Bourne, K. M. Harris, Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47–67 (2008). 10.1146/annurev.neuro.31.060407.125646
M. F. Bear, R. C. Malenka, Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol. 4, 389–399 (1994). 10.1016/0959-4388(94)90101-5
D. S. Roy, A. Arons, T. I. Mitchell, M. Pignatelli, T. J. Ryan, S. Tonegawa, Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531, 508–512 (2016). 10.1038/nature17172
J. N. Perusini, S. A. Cajigas, O. Cohensedgh, S. C. Lim, I. P. Pavlova, Z. R. Donaldson, C. A. Denny, Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer’s disease mice. Hippocampus 27, 1110–1122 (2017). 10.1002/hipo.22756
M. El Haj, V. Postal, P. Allain, Music enhances autobiographical memory in mild Alzheimer’s disease. Educ. Gerontol. 38, 30–41 (2012). 10.1080/03601277.2010.515897
A. Herlitz, R. Adolfsson, L. Bäckman, L. G. Nilsson, Cue utilization following different forms of encoding in mildly, moderately, and severely demented patients with Alzheimer’s disease. Brain Cogn. 15, 119–130 (1991). 10.1016/0278-2626(91)90020-9
E. K. Warrington, L. Weiskrantz, Amnesic syndrome: Consolidation or retrieval? Nature 228, 628–630 (1970). 10.1038/228628a0
R. R. Miller, L. D. Matzel, Retrieval failure versus memory loss in experimental amnesia: Definitions and processes. Learn. Mem. 13, 491–497 (2006). 10.1101/lm.241006
O. Hardt, S. H. Wang, K. Nader, Storage or retrieval deficit: The yin and yang of amnesia. Learn. Mem. 16, 224–230 (2009). 10.1101/lm.1267409
L. R. Squire, Lost forever or temporarily misplaced? The long debate about the nature of memory impairment. Learn. Mem. 13, 522–529 (2006). 10.1101/lm.310306
E. Tulving, Z. Pearlstone, Availability versus accessibility of information in memory for words. J. Verbal Learn. Verbal Behav. 5, 381–391 (1966). 10.1016/S0022-5371(66)80048-8
P. W. Frankland, S. A. Josselyn, S. Köhler, The neurobiological foundation of memory retrieval. Nat. Neurosci. 22, 1576–1585 (2019). 10.1038/s41593-019-0493-1
J. H. Kogan, P. W. Franklandand, A. J. Silva, Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus 10, 47–56 (2000). 10.1002/(SICI)1098-1063(2000)10:1<47::AID-HIPO5>3.0.CO;2-6
F. L. Hitti, S. A. Siegelbaum, The hippocampal CA2 region is essential for social memory. Nature 508, 88–92 (2014). 10.1038/nature13028
T. Okuyama, T. Kitamura, D. S. Roy, S. Itohara, S. Tonegawa, Ventral CA1 neurons store social memory. Science 353, 1536–1541 (2016). 10.1126/science.aaf7003
J. Kim, S. Lee, K. Park, I. Hong, B. Song, G. Son, H. Park, W. R. Kim, E. Park, H. K. Choe, H. Kim, C. Lee, W. Sun, K. Kim, K. S. Shin, S. Choi, Amygdala depotentiation and fear extinction. Proc. Natl. Acad. Sci. U.S.A. 104, 20955–20960 (2007). 10.1073/pnas.0710548105
I. Hong, B. Song, S. Lee, J. Kim, J. Kim, S. Choi, Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala. Eur. J. Neurosci. 30, 2089–2099 (2009). 10.1111/j.1460-9568.2009.07004.x
C.-H. Lin, C.-C. Lee, P.-W. Gean, Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol. Pharmacol. 63, 44–52 (2003). 10.1124/mol.63.1.44
T. Yoshii, H. Hosokawa, N. Matsuo, Pharmacogenetic reactivation of the original engram evokes an extinguished fear memory. Neuropharmacology 113, 1–9 (2017). 10.1016/j.neuropharm.2016.09.012
R. L. Clem, D. Schiller, New learning and unlearning: Strangers or accomplices in threat memory attenuation? Trends Neurosci. 39, 340–351 (2016). 10.1016/j.tins.2016.03.003
N. V. Luchkina, V. Y. Bolshakov, Mechanisms of fear learning and extinction: Synaptic plasticity-fear memory connection. Psychopharmacology (Berl.) 236, 163–182 (2019). 10.1007/s00213-018-5104-4
C. A. Orsini, S. Maren, Neural and cellular mechanisms of fear and extinction memory formation. Neurosci. Biobehav. Rev. 36, 1773–1802 (2012). 10.1016/j.neubiorev.2011.12.014
K. M. Myers, M. Davis, Mechanisms of fear extinction. Mol. Psychiatry 12, 120–150 (2007). 10.1038/
M. E. Bouton, R. F. Westbrook, K. A. Corcoran, S. Maren, Contextual and temporal modulation of extinction: Behavioral and biological mechanisms. Biol. Psychiatry 60, 352–360 (2006). 10.1016/j.biopsych.2005.12.015
J. Ji, S. Maren, Hippocampal involvement in contextual modulation of fear extinction. Hippocampus 17, 749–758 (2007). 10.1002/hipo.20331
M. E. Bouton, Context and behavioral processes in extinction. Learn. Mem. 11, 485–494 (2004). 10.1101/lm.78804
G. J. Quirk, D. Mueller, Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33, 56–72 (2008). 10.1038/sj.npp.1301555
M. E. Bouton, J. B. Nelson, Context-specificity of target versus feature inhibition in a feature-negative discrimination. J. Exp. Psychol. Anim. Behav. Process. 20, 51–65 (1994). 10.1037/0097-7403.20.1.51
R. A. Rescorla, C. D. Heth, Reinstatement of fear to an extinguished conditioned stimulus. J. Exp. Psychol. Anim. Behav. Process. 1, 88–96 (1975). 10.1037/0097-7403.1.1.88
M. H. Monfils, K. K. Cowansage, E. Klann, J. E. LeDoux, Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science 324, 951–955 (2009). 10.1126/science.1167975
D. Schiller, M.-H. Monfils, C. M. Raio, D. C. Johnson, J. E. Ledoux, E. A. Phelps, Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463, 49–53 (2010). 10.1038/nature08637
X. Zhang, J. Kim, S. Tonegawa, Amygdala reward neurons form and store fear extinction memory. Neuron 10.1016/j.neuron.2019.12.025 (2020).
J. J. Kim, M. S. Fanselow, Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992). 10.1126/science.1585183
S. Maren, G. Aharonov, M. S. Fanselow, Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav. Brain Res. 88, 261–274 (1997). 10.1016/S0166-4328(97)00088-0
K. K. Tayler, K. Z. Tanaka, L. G. Reijmers, B. J. Wiltgen, Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr. Biol. 23, 99–106 (2013). 10.1016/j.cub.2012.11.019
S. Tonegawa, M. D. Morrissey, T. Kitamura, The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 19, 485–498 (2018). 10.1038/s41583-018-0031-2
B. J. Wiltgen, A. J. Silva, Memory for context becomes less specific with time. Learn. Mem. 14, 313–317 (2007). 10.1101/lm.430907
B. J. Wiltgen, M. Zhou, Y. Cai, J. Balaji, M. G. Karlsson, S. N. Parivash, W. Li, A. J. Silva, The hippocampus plays a selective role in the retrieval of detailed contextual memories. Curr. Biol. 20, 1336–1344 (2010). 10.1016/j.cub.2010.06.068
S. H. Wang, C. M. Teixeira, A. L. Wheeler, P. W. Frankland, The precision of remote context memories does not require the hippocampus. Nat. Neurosci. 12, 253–255 (2009). 10.1038/nn.2263
G. Winocur, M. Moscovitch, Memory transformation and systems consolidation. J. Int. Neuropsychol. Soc. 17, 766–780 (2011). 10.1017/S1355617711000683
M. Moscovitch, R. Cabeza, G. Winocur, L. Nadel, Episodic memory and beyond: The hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016). 10.1146/annurev-psych-113011-143733
N. Guo, M. E. Soden, C. Herber, M. T. W. Kim, A. Besnard, P. Lin, X. Ma, C. L. Cepko, L. S. Zweifel, A. Sahay, Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization. Nat. Med. 24, 438–449 (2018). 10.1038/nm.4491
M. Shehata, K. Abdou, K. Choko, M. Matsuo, H. Nishizono, K. Inokuchi, Autophagy enhances memory erasure through synaptic destabilization. J. Neurosci. 38, 3809–3822 (2018). 10.1523/JNEUROSCI.3505-17.2018
C. B. Kirwan, C. E. Stark, Overcoming interference: An fMRI investigation of pattern separation in the medial temporal lobe. Learn. Mem. 14, 625–633 (2007). 10.1101/lm.663507
J. K. Leutgeb, S. Leutgeb, M. B. Moser, E. I. Moser, Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966 (2007). 10.1126/science.1135801
K. A. Norman, R. C. O’Reilly, Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychol. Rev. 110, 611–646 (2003). 10.1037/0033-295X.110.4.611
A. Gilboa, H. Marlatte, Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci. 21, 618–631 (2017). 10.1016/j.tics.2017.04.013
S. McKenzie, H. Eichenbaum, Consolidation and reconsolidation: Two lives of memories? Neuron 71, 224–233 (2011). 10.1016/j.neuron.2011.06.037
M. L. Schlichting, A. R. Preston, Memory integration: Neural mechanisms and implications for behavior. Curr. Opin. Behav. Sci. 1, 1–8 (2015). 10.1016/j.cobeha.2014.07.005
D. Tse, R. F. Langston, M. Kakeyama, I. Bethus, P. A. Spooner, E. R. Wood, M. P. Witter, R. G. M. Morris, Schemas and memory consolidation. Science 316, 76–82 (2007). 10.1126/science.1135935
D. Zeithamova, A. R. Preston, Temporal proximity promotes integration of overlapping events. J. Cogn. Neurosci. 29, 1311–1323 (2017). 10.1162/jocn_a_01116
A. J. Rashid, C. Yan, V. Mercaldo, H.-L. Hsiang, S. Park, C. J. Cole, A. De Cristofaro, J. Yu, C. Ramakrishnan, S. Y. Lee, K. Deisseroth, P. W. Frankland, S. A. Josselyn, Competition between engrams influences fear memory formation and recall. Science 353, 383–387 (2016). 10.1126/science.aaf0594
D. J. Cai, D. Aharoni, T. Shuman, J. Shobe, J. Biane, W. Song, B. Wei, M. Veshkini, M. La-Vu, J. Lou, S. E. Flores, I. Kim, Y. Sano, M. Zhou, K. Baumgaertel, A. Lavi, M. Kamata, M. Tuszynski, M. Mayford, P. Golshani, A. J. Silva, A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016). 10.1038/nature17955
M. Sehgal, M. Zhou, A. Lavi, S. Huang, Y. Zhou, A. J. Silva, Memory allocation mechanisms underlie memory linking across time. Neurobiol. Learn. Mem. 153, 21–25 (2018). 10.1016/j.nlm.2018.02.021
P. Rao-Ruiz, J. J. Couey, I. M. Marcelo, C. G. Bouwkamp, D. E. Slump, M. R. Matos, R. J. van der Loo, G. J. Martins, M. van den Hout, W. F. van IJcken, R. M. Costa, M. C. van den Oever, S. A. Kushner, Engram-specific transcriptome profiling of contextual memory consolidation. Nat. Commun. 10, 2232 (2019). 10.1038/s41467-019-09960-x
M. Pignatelli, T. J. Ryan, D. S. Roy, C. Lovett, L. M. Smith, S. Muralidhar, S. Tonegawa, Engram cell excitability state determines the efficacy of memory retrieval. Neuron 101, 274–284.e5 (2019). 10.1016/j.neuron.2018.11.029
J. Yokose, R. Okubo-Suzuki, M. Nomoto, N. Ohkawa, H. Nishizono, A. Suzuki, M. Matsuo, S. Tsujimura, Y. Takahashi, M. Nagase, A. M. Watabe, M. Sasahara, F. Kato, K. Inokuchi, Overlapping memory trace indispensable for linking, but not recalling, individual memories. Science 355, 398–403 (2017). 10.1126/science.aal2690
B. J. Levy, A. D. Wagner, Measuring memory reactivation with functional MRI: Implications for psychological theory. Perspect. Psychol. Sci. 8, 72–78 (2013). 10.1177/1745691612469031
M. L. Mack, B. C. Love, A. R. Preston, Building concepts one episode at a time: The hippocampus and concept formation. Neurosci. Lett. 680, 31–38 (2018). 10.1016/j.neulet.2017.07.061
M. L. Schlichting, A. R. Preston, Memory reactivation during rest supports upcoming learning of related content. Proc. Natl. Acad. Sci. U.S.A. 111, 15845–15850 (2014). 10.1073/pnas.1404396111
D. Zeithamova, M. L. Schlichting, A. R. Preston, The hippocampus and inferential reasoning: Building memories to navigate future decisions. Front. Hum. Neurosci. 6, 70 (2012). 10.3389/fnhum.2012.00070
M. S. Gazzaniga, Conversations in the Cognitive Neurosciences (MIT Press, 1997).
H. B. Barlow, in The Cognitive Neurosciences, M. S. Gazzaniga, Ed. (MIT Press, 1995), pp. 415–435.
C. G. Gross, Genealogy of the “grandmother cell”. Neuroscientist 8, 512–518 (2002). 10.1177/107385802237175
R. Yuste, From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16, 487–497 (2015). 10.1038/nrn3962
H. Eichenbaum, Barlow versus Hebb: When is it time to abandon the notion of feature detectors and adopt the cell assembly as the unit of cognition? Neurosci. Lett. 680, 88–93 (2018). 10.1016/j.neulet.2017.04.006
C. A. Denny, E. Lebois, S. Ramirez, From engrams to pathologies of the brain. Front. Neural Circuits 11, 23 (2017). 10.3389/fncir.2017.00023
E. C. Tolman, C. H. Honzik, Introduction and removal of reward, and maze performance in rats. Univ. Calif. Publ. Psychol. 4, 257–275 (1930).
G. T. Philips, E. I. Tzvetkova, S. Marinesco, T. J. Carew, Latent memory for sensitization in Aplysia. Learn. Mem. 13, 224–229 (2006). 10.1101/lm.111506
R. E. Lubow, A. U. Moore, Latent inhibition: The effect of nonreinforced pre-exposure to the conditional stimulus. J. Comp. Physiol. Psychol. 52, 415–419 (1959). 10.1037/h0046700
D. J. Lewis, Psychobiology of active and inactive memory. Psychol. Bull. 86, 1054–1083 (1979). 10.1037/0033-2909.86.5.1054
K. Nader, G. E. Schafe, J. E. Le Doux, Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000). 10.1038/35021052
J. Przybyslawski, S. J. Sara, Reconsolidation of memory after its reactivation. Behav. Brain Res. 84, 241–246 (1997). 10.1016/S0166-4328(96)00153-2
S. Kida, S. A. Josselyn, S. Peña de Ortiz, J. H. Kogan, I. Chevere, S. Masushige, A. J. Silva, CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5, 348–355 (2002). 10.1038/nn819
S. J. Sara, Retrieval and reconsolidation: Toward a neurobiology of remembering. Learn. Mem. 7, 73–84 (2000). 10.1101/lm.7.2.73
R. G. Morris, J. Inglis, J. A. Ainge, H. J. Olverman, J. Tulloch, Y. Dudai, P. A. T. Kelly, Memory reconsolidation: Sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron 50, 479–489 (2006). 10.1016/j.neuron.2006.04.012
J. L. Lee, Memory reconsolidation mediates the updating of hippocampal memory content. Front. Behav. Neurosci. 4, 168 (2010). 10.3389/fnbeh.2010.00168
M. Eisenberg, T. Kobilo, D. E. Berman, Y. Dudai, Stability of retrieved memory: Inverse correlation with trace dominance. Science 301, 1102–1104 (2003). 10.1126/science.1086881
M. C. Anderson, R. A. Bjork, E. L. Bjork, Remembering can cause forgetting: Retrieval dynamics in long-term memory. J. Exp. Psychol. Learn. Mem. Cogn. 20, 1063–1087 (1994). 10.1037/0278-7393.20.5.1063
B. A. Richards, P. W. Frankland, The conjunctive trace. Hippocampus 23, 207–212 (2013). 10.1002/hipo.22089
A. Rubin, N. Geva, L. Sheintuch, Y. Ziv, Hippocampal ensemble dynamics timestamp events in long-term memory. eLife 4, e12247 (2015). 10.7554/eLife.12247
S. Brodt, S. Gais, J. Beck, M. Erb, K. Scheffler, M. Schönauer, Fast track to the neocortex: A memory engram in the posterior parietal cortex. Science 362, 1045–1048 (2018). 10.1126/science.aau2528
K. Nader, Memory traces unbound. Trends Neurosci. 26, 65–72 (2003). 10.1016/S0166-2236(02)00042-5
Y. Dudai, The restless engram: Consolidations never end. Annu. Rev. Neurosci. 35, 227–247 (2012). 10.1146/annurev-neuro-062111-150500
D. Schiller, E. A. Phelps, Does reconsolidation occur in humans? Front. Behav. Neurosci. 5, 24 (2011). 10.3389/fnbeh.2011.00024
M. Kindt, M. Soeter, B. Vervliet, Beyond extinction: Erasing human fear responses and preventing the return of fear. Nat. Neurosci. 12, 256–258 (2009). 10.1038/nn.2271


eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors


Published In

Volume 367 | Issue 6473
3 January 2020

Submission history

Published in print: 3 January 2020


Request permissions for this article.


We thank our many colleagues for interesting conversations that shaped this review. In particular, we would like to acknowledge the contributions of Y. Dudai, P. Frankland, S. Köhler, M. Pignatelli, and S. Waddell, as well as J. Lau (for figure preparation) and D. Roy and J. Yu (for a sorted publication list); and the members of the Josselyn, Tonegawa, and Frankland labs for helpful discussions. Funding: Supported by the Canadian Institute of Health Research (CIHR, FDN-388455), the Natural Science and Engineering Research Council (NSERC) Discovery Grant, the Canadian Institute for Advanced Studies (CiFAR) Grant, and the NIH (NIMH, 1 R01 MH119421-01) (to S.A.J); and by RIKEN’s Center for Brain Science, Howard Hughes Medical Institute (HHMI), and JPB Foundation (to S.T.). Competing interests: The authors declare no competing interests.



Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.
Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada.
Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada.
Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada.
RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Funding Information

NIMH: 1 R01 MH119421-01


Corresponding author. Email: [email protected] (S.A.J.); [email protected] (S.T.)

Metrics & Citations


Article Usage


Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Fear Conditioning in Laboratory Rodents, Psychiatric Vulnerability, Mood, and Anxiety Disorders, (119-160), (2023).
  2. Neural correlates of recall and extinction in a rat model of appetitive Pavlovian conditioning, Behavioural Brain Research, 440, (114248), (2023).
  3. Neural ensembles in navigation: From single cells to population codes, Current Opinion in Neurobiology, 78, (102665), (2023).
  4. The Ethics of Memory Modification: Personal Narratives, Relational Selves and Autonomy, Neuroethics, 16, 1, (2022).
  5. Locus coeruleus input-modulated reactivation of dentate gyrus opioid-withdrawal engrams promotes extinction, Neuropsychopharmacology, 48, 2, (327-340), (2022).
  6. Neuronal ensembles in memory processes, Seminars in Cell & Developmental Biology, 125, (136-143), (2022).
  7. The essence of the engram: Cellular or synaptic?, Seminars in Cell & Developmental Biology, 125, (122-135), (2022).
  8. High-resolution imaging and manipulation of endogenous AMPA receptor surface mobility during synaptic plasticity and learning, Science Advances, 8, 30, (2022)./doi/10.1126/sciadv.abm5298
  9. Synaptic ensembles between raphe and D1R-containing accumbens shell neurons underlie postisolation sociability in males, Science Advances, 8, 41, (2022)./doi/10.1126/sciadv.abo7527
  10. Synaptic activity–dependent changes in the hippocampal palmitoylome, Science Signaling, 15, 763, (2022)./doi/10.1126/scisignal.add2519
  11. See more

View Options

Check Access

Log in to view the full text


AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text








Share article link

Share on social media