Phase separation and gene control

Many components of eukaryotic transcription machinery—such as transcription factors and cofactors including BRD4, subunits of the Mediator complex, and RNA polymerase II—contain intrinsically disordered low-complexity domains. Now a conceptual framework connecting the nature and behavior of their interactions to their functions in transcription regulation is emerging (see the Perspective by Plys and Kingston). Chong et al. found that low-complexity domains of transcription factors form concentrated hubs via functionally relevant dynamic, multivalent, and sequence-specific protein-protein interaction. These hubs have the potential to phase-separate at higher concentrations. Indeed, Sabari et al. showed that at super-enhancers, BRD4 and Mediator form liquid-like condensates that compartmentalize and concentrate the transcription apparatus to maintain expression of key cell-identity genes. Cho et al. further revealed the differential sensitivity of Mediator and RNA polymerase II condensates to selective transcription inhibitors and how their dynamic interactions might initiate transcription elongation.
Science, this issue p. eaar2555, p. eaar3958, p. 412; see also p. 329

Structured Abstract


Mammalian genes that play prominent roles in healthy and diseased cellular states are often controlled by special DNA elements called super-enhancers (SEs). SEs are clusters of enhancers that are occupied by an unusually high density of interacting factors and drive higher levels of transcription than most typical enhancers. This high-density assembly at SEs has been shown to exhibit sharp transitions of formation and dissolution, forming in a single nucleation event and collapsing when chromatin factors or nucleation sites are deleted. These features led us to postulate that SEs are phase-separated multimolecular assemblies, also known as biomolecular condensates. Phase-separated condensates, such as the nucleolus and other membraneless cellular bodies, provide a means to compartmentalize and concentrate biochemical reactions within cells.


SEs are formed by the binding of master transcription factors (TFs) at each component enhancer, and these recruit unusually high densities of coactivators, including Mediator and BRD4. Mediator is a large (~1.2 MDa) multisubunit complex that has multiple roles in transcription, including bridging interactions between TFs and RNA polymerase II (RNA Pol II). BRD4 facilitates the release of RNA Pol II molecules from the site of transcription initiation. The presence of MED1, a subunit of Mediator, and BRD4 can be used to define SEs. We reasoned that if transcriptional condensates are formed at SEs, then MED1 and BRD4 should be visualized as discrete bodies at SE elements in cell nuclei. These bodies should exhibit behaviors described for liquid-like condensates. We investigated these possibilities by using murine embryonic stem cells (mESCs), in which SEs were originally described. Because intrinsically disordered regions (IDRs) of proteins have been implicated in condensate formation, we postulated that the large IDRs present in MED1 and BRD4 might be involved.


We found that MED1 and BRD4 occupy discrete nuclear bodies that occur at SEs in mESCs. These bodies exhibit properties of other well-studied biomolecular condensates, including rapid recovery of fluorescence after photobleaching and sensitivity to 1,6-hexanediol, which disrupts liquid-like condensates. Disruption of MED1 and BRD4 bodies by 1,6-hexanediol was accompanied by a loss of chromatin-bound MED1 and BRD4 at SEs, as well as a loss of RNA Pol II at SEs and SE-driven genes. The IDRs of both MED1 and BRD4 formed phase-separated liquid droplets in vitro, and these droplets exhibited features characteristic of condensates formed by networks of weak protein-protein interactions. The MED1-IDR droplets were found to concentrate BRD4 and RNA Pol II from transcriptionally competent nuclear extracts, which may reflect their contribution to compartmentalizing and concentrating biochemical reactions associated with transcription at SEs in cells.


Our results show that coactivators form phase-separated condensates at SEs and that SE condensates compartmentalize and concentrate the transcription apparatus at key cell-identity genes. These results have implications for the mechanisms involved in the control of genes in healthy and diseased cell states. We suggest that SE condensates facilitate the compartmentalization and concentration of transcriptional components at specific genes through the phase-separating properties of IDRs in TFs and cofactors. SE condensates may thus ensure robust transcription of genes essential to cell-identity maintenance. These properties may also explain why cancer cells acquire large SEs at driver oncogenes and why SEs that facilitate transcriptional dysregulation in disease can be especially sensitive to transcriptional inhibitors.
Phase separation of coactivators compartmentalizes and concentrates the transcription apparatus.
Enhancers are gene regulatory elements bound by transcription factors that recruit coactivators and the transcription apparatus (not shown) to regulate gene expression. Super-enhancers are clusters of enhancers bound by master transcription factors that concentrate high densities of coactivators and the transcription apparatus to drive robust expression of genes that play prominent roles in cell identity. This is achieved by the phase separation of coactivators, which is driven in part by high-valency and low-affinity interactions of intrinsically disordered regions.


Super-enhancers (SEs) are clusters of enhancers that cooperatively assemble a high density of the transcriptional apparatus to drive robust expression of genes with prominent roles in cell identity. Here we demonstrate that the SE-enriched transcriptional coactivators BRD4 and MED1 form nuclear puncta at SEs that exhibit properties of liquid-like condensates and are disrupted by chemicals that perturb condensates. The intrinsically disordered regions (IDRs) of BRD4 and MED1 can form phase-separated droplets, and MED1-IDR droplets can compartmentalize and concentrate the transcription apparatus from nuclear extracts. These results support the idea that coactivators form phase-separated condensates at SEs that compartmentalize and concentrate the transcription apparatus, suggest a role for coactivator IDRs in this process, and offer insights into mechanisms involved in the control of key cell-identity genes.
Get full access to this article

View all available purchase options and get full access to this article.

Already a Subscriber?

Supplementary Material


Materials and Methods
Figs. S1 to S10
Tables S1 to S3
References (6982)
Data S1


File (aar3958_sabari_sm.pdf)
File (
File (aar3958_sabari_sm_table_s2.xlsx)
File (aar3958_sabari_sm_table_s3.xlsx)

References and Notes

A. A. Hyman, C. A. Weber, F. Jülicher, Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).
S. F. Banani, H. O. Lee, A. A. Hyman, M. K. Rosen, Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
Y. Shin, C. P. Brangwynne, Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
C. P. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege, J. Gharakhani, F. Jülicher, A. A. Hyman, Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).
M. Kato, T. W. Han, S. Xie, K. Shi, X. Du, L. C. Wu, H. Mirzaei, E. J. Goldsmith, J. Longgood, J. Pei, N. V. Grishin, D. E. Frantz, J. W. Schneider, S. Chen, L. Li, M. R. Sawaya, D. Eisenberg, R. Tycko, S. L. McKnight, Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).
P. Li, S. Banjade, H.-C. Cheng, S. Kim, B. Chen, L. Guo, M. Llaguno, J. V. Hollingsworth, D. S. King, S. F. Banani, P. S. Russo, Q.-X. Jiang, B. T. Nixon, M. K. Rosen, Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).
Y. Lin, D. S. W. Protter, M. K. Rosen, R. Parker, Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol. Cell 60, 208–219 (2015).
K. Adelman, J. T. Lis, Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).
M. Bulger, M. Groudine, Functional and mechanistic diversity of distal transcription enhancers. Cell 144, 327–339 (2011).
E. Calo, J. Wysocka, Modification of enhancer chromatin: What, how, and why? Mol. Cell 49, 825–837 (2013).
F. Spitz, E. E. M. Furlong, Transcription factors: From enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).
W. Xie, B. Ren, Developmental biology. Enhancing pluripotency and lineage specification. Science 341, 245–247 (2013).
M. Levine, C. Cattoglio, R. Tjian, Looping back to leap forward: Transcription enters a new era. Cell 157, 13–25 (2014).
W. A. Whyte, D. A. Orlando, D. Hnisz, B. J. Abraham, C. Y. Lin, M. H. Kagey, P. B. Rahl, T. I. Lee, R. A. Young, Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).
D. Hnisz, B. J. Abraham, T. I. Lee, A. Lau, V. Saint-André, A. A. Sigova, H. A. Hoke, R. A. Young, Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).
J. M. Dowen, Z. P. Fan, D. Hnisz, G. Ren, B. J. Abraham, L. N. Zhang, A. S. Weintraub, J. Schujiers, T. I. Lee, K. Zhao, R. A. Young, Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374–387 (2014).
D. Hnisz, A. S. Weintraub, D. S. Day, A.-L. Valton, R. O. Bak, C. H. Li, J. Goldmann, B. R. Lajoie, Z. P. Fan, A. A. Sigova, J. Reddy, D. Borges-Rivera, T. I. Lee, R. Jaenisch, M. H. Porteus, J. Dekker, R. A. Young, Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).
X. Ji, D. B. Dadon, B. E. Powell, Z. P. Fan, D. Borges-Rivera, S. Shachar, A. S. Weintraub, D. Hnisz, G. Pegoraro, T. I. Lee, T. Misteli, R. Jaenisch, R. A. Young, 3D Chromosome Regulatory Landscape of Human Pluripotent Cells. Cell Stem Cell 18, 262–275 (2016).
M. R. Mansour, B. J. Abraham, L. Anders, A. Berezovskaya, A. Gutierrez, A. D. Durbin, J. Etchin, L. Lawton, S. E. Sallan, L. B. Silverman, M. L. Loh, S. P. Hunger, T. Sanda, R. A. Young, A. T. Look, An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373–1377 (2014).
J. D. Brown, C. Y. Lin, Q. Duan, G. Griffin, A. Federation, R. M. Paranal, S. Bair, G. Newton, A. Lichtman, A. Kung, T. Yang, H. Wang, F. W. Luscinskas, K. Croce, J. E. Bradner, J. Plutzky, NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol. Cell 56, 219–231 (2014).
B. Chapuy, M. R. McKeown, C. Y. Lin, S. Monti, M. G. M. Roemer, J. Qi, P. B. Rahl, H. H. Sun, K. T. Yeda, J. G. Doench, E. Reichert, A. L. Kung, S. J. Rodig, R. A. Young, M. A. Shipp, J. E. Bradner, Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell 24, 777–790 (2013).
J. Lovén, H. A. Hoke, C. Y. Lin, A. Lau, D. A. Orlando, C. R. Vakoc, J. E. Bradner, T. I. Lee, R. A. Young, Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).
E. Chipumuro, E. Marco, C. L. Christensen, N. Kwiatkowski, T. Zhang, C. M. Hatheway, B. J. Abraham, B. Sharma, C. Yeung, A. Altabef, A. Perez-Atayde, K.-K. Wong, G.-C. Yuan, N. S. Gray, R. A. Young, R. E. George, CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014).
N. Kwiatkowski, T. Zhang, P. B. Rahl, B. J. Abraham, J. Reddy, S. B. Ficarro, A. Dastur, A. Amzallag, S. Ramaswamy, B. Tesar, C. E. Jenkins, N. M. Hannett, D. McMillin, T. Sanda, T. Sim, N. D. Kim, T. Look, C. S. Mitsiades, A. P. Weng, J. R. Brown, C. H. Benes, J. A. Marto, R. A. Young, N. S. Gray, Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014).
Y. Wang, T. Zhang, N. Kwiatkowski, B. J. Abraham, T. I. Lee, S. Xie, H. Yuzugullu, T. Von, H. Li, Z. Lin, D. G. Stover, E. Lim, Z. C. Wang, J. D. Iglehart, R. A. Young, N. S. Gray, J. J. Zhao, CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell 163, 174–186 (2015).
D. Hnisz, J. Schuijers, C. Y. Lin, A. S. Weintraub, B. J. Abraham, T. I. Lee, J. E. Bradner, R. A. Young, Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol. Cell 58, 362–370 (2015).
T. Jiang, R. Raviram, V. Snetkova, P. P. Rocha, C. Proudhon, S. Badri, R. Bonneau, J. A. Skok, Y. Kluger, Identification of multi-loci hubs from 4C-seq demonstrates the functional importance of simultaneous interactions. Nucleic Acids Res. 44, 8714–8725 (2016).
C. Proudhon, V. Snetkova, R. Raviram, C. Lobry, S. Badri, T. Jiang, B. Hao, T. Trimarchi, Y. Kluger, I. Aifantis, R. Bonneau, J. A. Skok, Active and Inactive Enhancers Cooperate to Exert Localized and Long-Range Control of Gene Regulation. Cell Rep. 15, 2159–2169 (2016).
H. Y. Shin, M. Willi, K. HyunYoo, X. Zeng, C. Wang, G. Metser, L. Hennighausen, Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat. Genet. 48, 904–911 (2016).
D. Hnisz, K. Shrinivas, R. A. Young, A. K. Chakraborty, P. A. Sharp, A Phase Separation Model for Transcriptional Control. Cell 169, 13–23 (2017).
Z. Yang, J. H. N. Yik, R. Chen, N. He, M. K. Jang, K. Ozato, Q. Zhou, Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).
M. K. Jang, K. Mochizuki, M. Zhou, H.-S. Jeong, J. N. Brady, K. Ozato, The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).
R. Di Micco, B. Fontanals-Cirera, V. Low, P. Ntziachristos, S. K. Yuen, C. D. Lovell, I. Dolgalev, Y. Yonekubo, G. Zhang, E. Rusinova, G. Gerona-Navarro, M. Cañamero, M. Ohlmeyer, I. Aifantis, M. M. Zhou, A. Tsirigos, E. Hernando, Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Rep. 9, 234–247 (2014).
J. Soutourina, S. Wydau, Y. Ambroise, C. Boschiero, M. Werner, Direct interaction of RNA polymerase II and mediator required for transcription in vivo. Science 331, 1451–1454 (2011).
J. Soutourina, Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 19, 262–274 (2018).
T. J. Nott, E. Petsalaki, P. Farber, D. Jervis, E. Fussner, A. Plochowietz, T. D. Craggs, D. P. Bazett-Jones, T. Pawson, J. D. Forman-Kay, A. J. Baldwin, Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).
C. W. Pak, M. Kosno, A. S. Holehouse, S. B. Padrick, A. Mittal, R. Ali, A. A. Yunus, D. R. Liu, R. V. Pappu, M. K. Rosen, Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein. Mol. Cell 63, 72–85 (2016).
C. P. Brangwynne, T. J. Mitchison, A. A. Hyman, Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. U.S.A. 108, 4334–4339 (2011).
A. Patel, L. Malinovska, S. Saha, J. Wang, S. Alberti, Y. Krishnan, A. A. Hyman, ATP as a biological hydrotrope. Science 356, 753–756 (2017).
S. Kroschwald, S. Maharana, A. Simon, Hexanediol: A chemical probe to investigate the material properties of membrane-less compartments. Matters 10.19185/matters.201702000010 (2017).
C. Y. Lin, J. Lovén, P. B. Rahl, R. M. Paranal, C. B. Burge, J. E. Bradner, T. I. Lee, R. A. Young, Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).
S. Elbaum-Garfinkle, Y. Kim, K. Szczepaniak, C. C.-H. Chen, C. R. Eckmann, S. Myong, C. P. Brangwynne, The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl. Acad. Sci. U.S.A. 112, 7189–7194 (2015).
C. P. Brangwynne, Phase transitions and size scaling of membrane-less organelles. J. Cell Biol. 203, 875–881 (2013).
Y. Shin, J. Berry, N. Pannucci, M. P. Haataja, J. E. Toettcher, C. P. Brangwynne, Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell 168, 159–171.e14 (2017).
I. Ozkan-Dagliyan, Y.-Y. Chiou, R. Ye, B. H. Hassan, N. Ozturk, A. Sancar, Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: Application as an optogenetic DNA damage checkpoint switch. J. Biol. Chem. 288, 23244–23251 (2013).
X. Yu, R. Sayegh, M. Maymon, K. Warpeha, J. Klejnot, H. Yang, J. Huang, J. Lee, L. Kaufman, C. Lin, Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell 21, 118–130 (2009).
M.-T. Wei, S. Elbaum-Garfinkle, A. S. Holehouse, C. C.-H. Chen, M. Feric, C. B. Arnold, R. D. Priestley, R. V. Pappu, C. P. Brangwynne, Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat. Chem. 9, 1118–1125 (2017).
H. I. Suzuki, R. A. Young, P. A. Sharp, Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis. Cell 168, 1000–1014.e15 (2017).
J. E. Bradner, D. Hnisz, R. A. Young, Transcriptional Addiction in Cancer. Cell 168, 629–643 (2017).
M. Ptashne, How eukaryotic transcriptional activators work. Nature 335, 683–689 (1988).
P. J. Mitchell, R. Tjian, Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371–378 (1989).
J. Liu, N. B. Perumal, C. J. Oldfield, E. W. Su, V. N. Uversky, A. K. Dunker, Intrinsic disorder in transcription factors. Biochemistry 45, 6873–6888 (2006).
H. Xie, S. Vucetic, L. M. Iakoucheva, C. J. Oldfield, A. K. Dunker, V. N. Uversky, Z. Obradovic, Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 6, 1882–1898 (2007).
S. F. Banani, A. M. Rice, W. B. Peeples, Y. Lin, S. Jain, R. Parker, M. K. Rosen, Compositional Control of Phase-Separated Cellular Bodies. Cell 166, 651–663 (2016).
R. A. Beagrie, A. Scialdone, M. Schueler, D. C. Kraemer, M. Chotalia, S. Q. Xie, M. Barbieri, I. de Santiago, L. M. Lavitas, M. R. Branco, J. Fraser, J. Dostie, L. Game, N. Dillon, P. A. Edwards, M. Nicodemi, A. Pombo, Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).
S. S. P. Rao, S.-C. Huang, B. Glenn St Hilaire, J. M. Engreitz, E. M. Perez, K.-R. Kieffer-Kwon, A. L. Sanborn, S. E. Johnstone, G. D. Bascom, I. D. Bochkov, X. Huang, M. S. Shamim, J. Shin, D. Turner, Z. Ye, A. D. Omer, J. T. Robinson, T. Schlick, B. E. Bernstein, R. Casellas, E. S. Lander, E. L. Aiden, Cohesin Loss Eliminates All Loop Domains. Cell 171, 305–320.e24 (2017).
W.-K. Cho, J.-H. Spille, M. Hecht, C. Lee, C. Li, V. Grube, I. I. Cisse, Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).
W.-K. Cho, N. Jayanth, B. P. English, T. Inoue, J. O. Andrews, W. Conway, J. B. Grimm, J.-H. Spille, L. D. Lavis, T. Lionnet, I. I. Cisse, RNA Polymerase II cluster dynamics predict mRNA output in living cells. eLife 5, 1123 (2016).
A. G. Larson, D. Elnatan, M. M. Keenen, M. J. Trnka, J. B. Johnston, A. L. Burlingame, D. A. Agard, S. Redding, G. J. Narlikar, Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).
A. R. Strom, A. V. Emelyanov, M. Mir, D. V. Fyodorov, X. Darzacq, G. H. Karpen, Phase separation drives heterochromatin domain formation. Nature 547, 241–245 (2017).
M. Feric, N. Vaidya, T. S. Harmon, D. M. Mitrea, L. Zhu, T. M. Richardson, R. W. Kriwacki, R. V. Pappu, C. P. Brangwynne, Coexisting Liquid Phases Underlie Nucleolar Subcompartments. Cell 165, 1686–1697 (2016).
T. S. Harmon, A. S. Holehouse, M. K. Rosen, R. V. Pappu, Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017).
J. A. Riback, C. D. Katanski, J. L. Kear-Scott, E. V. Pilipenko, A. E. Rojek, T. R. Sosnick, D. A. Drummond, Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response. Cell 168, 1028–1040.e19 (2017).
S. Boeynaems, E. Bogaert, D. Kovacs, A. Konijnenberg, E. Timmerman, A. Volkov, M. Guharoy, M. De Decker, T. Jaspers, V. H. Ryan, A. M. Janke, P. Baatsen, T. Vercruysse, R.-M. Kolaitis, D. Daelemans, J. P. Taylor, N. Kedersha, P. Anderson, F. Impens, F. Sobott, J. Schymkowitz, F. Rousseau, N. L. Fawzi, W. Robberecht, P. Van Damme, P. Tompa, L. Van Den Bosch, Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Mol. Cell 65, 1044–1055.e5 (2017).
J. P. Brady, P. J. Farber, A. Sekhar, Y.-H. Lin, R. Huang, A. Bah, T. J. Nott, H. S. Chan, A. J. Baldwin, J. D. Forman-Kay, L. E. Kay, Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl. Acad. Sci. U.S.A. 114, E8194–E8203 (2017).
A. Patel, H. O. Lee, L. Jawerth, S. Maharana, M. Jahnel, M. Y. Hein, S. Stoynov, J. Mahamid, S. Saha, T. M. Franzmann, A. Pozniakovski, I. Poser, N. Maghelli, L. A. Royer, M. Weigert, E. W. Myers, S. Grill, D. Drechsel, A. A. Hyman, S. Alberti, A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 162, 1066–1077 (2015).
A. Molliex, J. Temirov, J. Lee, M. Coughlin, A. P. Kanagaraj, H. J. Kim, T. Mittag, J. P. Taylor, Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).
A. Jain, R. D. Vale, RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).
S. Malik, R. G. Roeder, in Nuclear Receptors, vol. 364 of Methods in Enzymology (Elsevier, 2003), pp. 257–284.
S. Albini, P. Coutinho Toto, A. Dall’Agnese, B. Malecova, C. Cenciarelli, A. Felsani, M. Caruso, S. J. Bultman, P. L. Puri, Brahma is required for cell cycle arrest and late muscle gene expression during skeletal myogenesis. EMBO Rep. 16, 1037–1050 (2015).
J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
A. Baddeley, E. Rubak, R. Turner, Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC Press, 2015).
B. L. Sprague, R. L. Pego, D. A. Stavreva, J. G. McNally, Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 86, 3473–3495 (2004).
D. Mazza, A. Abernathy, N. Golob, T. Morisaki, J. G. McNally, A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40, e119 (2012).
C. Trapnell, L. Pachter, S. L. Salzberg, TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).
L. Wang, S. Wang, W. Li, RSeQC: Quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).
B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson, B. E. Bernstein, C. Nusbaum, R. M. Myers, M. Brown, W. Li, X. S. Liu, Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, D. Haussler, The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
A. R. Quinlan, I. M. Hall, BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin; 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
V. K. Mootha, C. M. Lindgren, K.-F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Puigserver, E. Carlsson, M. Ridderstråle, E. Laurila, N. Houstis, M. J. Daly, N. Patterson, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn, D. Altshuler, L. C. Groop, PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

Information & Authors


Published In

Volume 361 | Issue 6400
27 July 2018

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 4 November 2017
Accepted: 6 June 2018
Published in print: 27 July 2018


Request permissions for this article.


We thank W. Salmon of the W. M. Keck Microscopy Facility; D. Richardson and S. Terclavers of the Harvard Center for Biological Imaging; and T. Volkert, D. Reynolds, S. Mraz, and S. Gupta of the Whitehead Genome Technologies Core for technical assistance. We thank the Imaging Platform at the Broad Institute for assistance with CellProfiler. Funding: The work was supported by NIH grants GM123511 (R.A.Y.) and P01-CA042063 (P.A.S.), NSF grant PHY-1743900 (A.K.C., R.A.Y., and P.A.S.), Koch Institute Support (core) grant P30-CA14051 from the NCI (P.A.S.), Damon Runyon Cancer Research Foundation Fellowship 2309-17 (B.R.S.), Swedish Research Council Postdoctoral Fellowship VR 2017-00372 (A.B.), a Hope Funds for Cancer Research fellowship (B.J.A.), an NSF Graduate Research Fellowship (A.V.Z.), a Cancer Research Institute Irvington Fellowship (Y.E.G.), American Cancer Society New England Division Postdoctoral Fellowship PF-16-146-01-DMC (D.S.D.), and a NWO Rubicon Fellowship (J.S.). Author contributions: B.R.S., A.D., and R.A.Y. conceptualized and organized the project and wrote the manuscript. A.D., A.B., J.C.M., and Y.E.G. performed cell-imaging experiments and image analysis. I.A.K. and A.V.Z. generated endogenously tagged cell lines. B.R.S. and A.B. performed ChIP-seq. B.R.S. and E.L.C. performed in vitro droplet assays and optoIDR experiments. K.S. and B.J.A. developed and performed image analysis and produced visualizations. B.J.A. performed ChIP-seq analysis and produced visualizations. N.M.H. produced and purified recombinant proteins. A.V.Z. helped with biochemical experiments. C.H.L. performed protein amino acid analysis. D.S.D. performed ChIA-PET analysis and visualization. B.R.S., I.A.K., E.L.C., J.S., and A.V.Z. generated constructs. S.M. performed in vitro transcription assays. D.H., E.V., T.I.L., I.I.C., R.G.R., P.A.S., A.K.C., and R.A.Y. provided input into experimental design and interpretation. P.A.S., A.K.C., and R.A.Y. acquired funding for this study. R.A.Y. supervised the project with help from T.I.L. and A.K.C. All authors contributed to editing the manuscript. Competing interests: The Whitehead Institute filed a patent application based on this paper. R.A.Y. is a founder and shareholder of Syros Pharmaceuticals, Camp4 Therapeutics, and Omega Therapeutics. B.J.A. and T.I.L. are shareholders of Syros Pharmaceuticals, and T.I.L. is a consultant to Camp4 Therapeutics. All other authors declare no competing interests. Data and materials availability: Datasets generated in this study have been deposited in the Gene Expression Omnibus under accession number GSE112808.



Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
Eliot L. Coffey
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Nancy M. Hannett
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Alicia V. Zamudio
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Yang E. Guo
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Daniel S. Day
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Jurian Schuijers
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Tong Ihn Lee
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA 02139, USA.
Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Funding Information

Hope Funds for Cancer Research:


These authors contributed equally to this work.
†Corresponding author. Email: [email protected]

Metrics & Citations


Article Usage


Export citation

Select the format you want to export the citation of this publication.

Cited by
  1. Nanoscale chromatin imaging and analysis platform bridges 4D chromatin organization with molecular function, Science Advances, 7, 1, (2021)./doi/10.1126/sciadv.abe4310
  2. Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice, Science Advances, 7, 1, (2021)./doi/10.1126/sciadv.abd3568
  3. lncRNA SLERT controls phase separation of FC/DFCs to facilitate Pol I transcription, Science, 373, 6554, (547-555), (2021)./doi/10.1126/science.abf6582
  4. N-terminal Domain of TDP43 Enhances Liquid-Liquid Phase Separation of Globular Proteins, Journal of Molecular Biology, 433, 10, (166948), (2021).
  5. Enhancer rewiring in tumors: an opportunity for therapeutic intervention, Oncogene, 40, 20, (3475-3491), (2021).
  6. Self‐assembly of multi‐component mitochondrial nucleoids via phase separation, The EMBO Journal, 40, 6, (2021).
  7. Towards Decoding the Sequence-Based Grammar Governing the Functions of Intrinsically Disordered Protein Regions, Journal of Molecular Biology, 433, 12, (166724), (2021).
  8. Crystallin gene expression: Insights from studies of transcriptional bursting, Experimental Eye Research, 207, (108564), (2021).
  9. The Intrinsically Disordered Proteins MLLT3 (AF9) and MLLT1 (ENL) – Multimodal Transcriptional Switches With Roles in Normal Hematopoiesis, MLL Fusion Leukemia, and Kidney Cancer, Journal of Molecular Biology, (167117), (2021).
  10. Nuclear organization and regulation of the differentiated state, Cellular and Molecular Life Sciences, 78, 7, (3141-3158), (2021).
  11. See more

View Options

Get Access

Log in to view the full text

AAAS Log in

AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF







Share article link

Share on social media