Advertisement

Structured Abstract

INTRODUCTION

Earth’s carbon cycle involves large fluxes of carbon dioxide (CO2) between the atmosphere, land biosphere, and oceans. Over the past several decades, net loss of CO2 from the atmosphere to the land and oceans has varied considerably from year to year, equaling 20 to 80% of CO2 emissions from fossil fuel combustion and land use change. On average, the uptake is about 50%. The imbalance between CO2 emissions and removal is seen in increasing atmospheric CO2 concentrations. In recent years, an increase of 2 to 3 parts per million (ppm) per year in the atmospheric mole fraction, which is currently about 400 ppm, has been observed.
Almost a quarter of the CO2 emitted by human activities is being absorbed by the ocean, and another quarter is absorbed by processes on land. The identity and location of the terrestrial sinks are poorly understood. This absorption has been attributed by some to tropical or Eurasian temperate forests, whereas others argue that these regions may be net sources of CO2. The efficiency of these land sinks appears to vary dramatically from year to year. Because the identity, location, and processes controlling these natural sinks are not well constrained, substantial additional uncertainty is added to projections of future CO2 levels.

RATIONALE

The NASA satellite, the Orbiting Carbon Observatory-2 (OCO-2), which was launched on 2 July 2014, is designed to collect global measurements with sufficient precision, coverage, and resolution to aid in resolving sources and sinks of CO2 on regional scales. Since 6 September 2014, the OCO-2 mission has been producing about 2 million estimates of the column-averaged CO2 dry-air mole fraction (XCO2) each month after quality screening, with spatial resolution of <3 km2 per sounding. Solar-induced chlorophyll fluorescence (SIF), a small amount of light emitted during photosynthesis, is detected in remote sensing measurements of radiance within solar Fraunhofer lines and is another data product from OCO-2.

RESULTS

The measurements from OCO-2 provide a global view of the seasonal cycles and spatial patterns of atmospheric CO2, with the anticipated year-over-year growth rate. The buildup of CO2 in the Northern Hemisphere during winter and its rapid decrease in concentration as spring arrives (and the SIF increases) is seen in unprecedented detail. The enhanced CO2 in urban areas relative to nearby background areas is observed with a single overpass of OCO-2. Increases in CO2 due to the biomass burning in Africa are also clearly observed. The dense, global, XCO2 and SIF data sets from OCO-2 are combined with other remote sensing data sets and used to disentangle the processes driving the carbon cycle on regional scales during the recent 2015–2016 El Niño event. This analysis shows more carbon release in 2015 relative to 2011 over Africa, South America, and Southeast Asia. Now, the fundamental driver for the change in carbon release can be assessed continent by continent, rather than treating the tropics as a single, integrated region. Small changes in XCO2 were also observed early in the El Niño over the equatorial eastern Pacific, due to less upwelling of cold, carbon-rich water than is typical.

CONCLUSION

NASA’s OCO-2 mission is collecting a dense, global set of high-spectral resolution measurements that are used to estimate XCO2 and SIF. The OCO-2 mission data set can now be used to assess regional-scale sources and sinks of CO2 around the globe. The papers in this collection present early scientific findings from this new data set.
El Niño impact on carbon flux in 2015 relative to 2011, detected from Greenhouse Gases Observing Satellite (GOSAT) and OCO-2 data.
OCO-2 uses reflected sunlight to derive XCO2 and SIF. This shows OCO-2 XCO2 data over North America from 12 August 2015 to 26 August 2015.

Abstract

NASA’s Orbiting Carbon Observatory-2 (OCO-2) mission was motivated by the need to diagnose how the increasing concentration of atmospheric carbon dioxide (CO2) is altering the productivity of the biosphere and the uptake of CO2 by the oceans. Launched on 2 July 2014, OCO-2 provides retrievals of the column-averaged CO2 dry-air mole fraction (XCO2) as well as the fluorescence from chlorophyll in terrestrial plants. The seasonal pattern of uptake by the terrestrial biosphere is recorded in fluorescence and the drawdown of XCO2 during summer. Launched just before one of the most intense El Niños of the past century, OCO-2 measurements of XCO2 and fluorescence record the impact of the large change in ocean temperature and rainfall on uptake and release of CO2 by the oceans and biosphere.

Get full access to this article

View all available purchase options and get full access to this article.

Already a subscriber or AAAS Member? Log In

Supplementary Material

Summary

Movie S1

Resources

File (aam5745_eldering_sm.pdf)
File (aam5745s1.mp4)

References and Notes

1
P. Ciais et al., in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014), pp. 465–570.
2
G. Marland, T. A. Boden, R. J. Andres, Global, Regional, and National Fossil Fuel CO2 Emissions. In Trends: A Compendium of Data on Global Change (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, 2008).
3
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O’Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, N. Zeng, Global carbon budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).
4
M. R. Raupach, M. Gloor, J. L. Sarmiento, J. G. Canadell, T. L. Frölicher, T. Gasser, R. A. Houghton, C. Le Quéré, C. M. Trudinger, The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences 11, 3453–3475 (2014).
5
E. Dlugokencky, P. Tans, “Greenhouse Gas Reference Network Site Information” (Earth System Research Laboratory, Global Monitoring Division, 2017); https://www.esrl.noaa.gov/gmd/ccgg/ggrn.php.
6
C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, A. F. Rios, The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).
7
D. Schimel, B. B. Stephens, J. B. Fisher, Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. U.S.A. 112, 436–441 (2015).
8
M. Reuter, M. Buchwitz, M. Hilker, J. Heymann, O. Schneising, D. Pillai, H. Bovensmann, J. P. Burrows, H. Bösch, R. Parker, A. Butz, O. Hasekamp, C. W. O’Dell, Y. Yoshida, C. Gerbig, T. Nehrkorn, N. M. Deutscher, T. Warneke, J. Notholt, F. Hase, R. Kivi, R. Sussmann, T. Machida, H. Matsueda, Y. Sawa, Satellite-inferred European carbon sink larger than expected. Atmos. Chem. Phys. 14, 13739–13753 (2014).
9
F. Chevallier, P. I. Palmer, L. Feng, H. Boesch, C. W. O’Dell, P. Bousquet, Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophys. Res. Lett. 41, 1065–1070 (2014).
10
J. Sarmiento, M. Gloor, N. Gruber, C. Beaulieu, A. R. Jacobson, S. E. Mikaloff Fletcher, S. Pacala, K. Rodgers, Trends and regional distributions of land and ocean carbon sinks. Biogeosciences 7, 2351–2367 (2010).
11
D. S. Schimel, Terrestrial ecosystems and the carbon cycle. Glob. Change Biol. 1, 77–91 (1995).
12
V. K. Arora, G. J. Boer, P. Friedlingstein, M. Eby, C. D. Jones, J. R. Christian, G. Bonan, L. Bopp, V. Brovkin, P. Cadule, T. Hajima, T. Ilyina, K. Lindsay, J. F. Tjiputra, T. Wu, Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Clim. 26, 5289–5314 (2013).
13
P. Friedlingstein, P. Cox, R. Betts, L. Bopp, W. von Bloh, V. Brovkin, P. Cadule, S. Doney, M. Eby, I. Fung, G. Bala, J. John, C. Jones, F. Joos, T. Kato, M. Kawamiya, W. Knorr, K. Lindsay, H. D. Matthews, T. Raddatz, P. Rayner, C. Reick, E. Roeckner, K.-G. Schnitzler, R. Schnur, K. Strassmann, A. J. Weaver, C. Yoshikawa, N. Zeng, Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).
14
E. Dlugokencky, P. Tans, “Trends in Atmospheric Carbon Dioxide” (Earth System Research Laboratory, Global Monitoring Division, 2017); https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html.
15
C. L. Zhao, P. P. Tans, Estimating uncertainty of the WMO mole fraction scale for carbon dioxide in air. J. Geophys. Res. D Atmos. 111, D08S09 (2006).
16
T. S. L’Ecuyer, J. H. Jiang, Touring the atmosphere aboard the A-Train. Phys. Today 63, 36–41 (2010).
17
D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O’Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, S. Schroll, The orbiting carbon observatory (OCO) mission. Adv. Space Res. 34, 700–709 (2004).
18
D. Crisp, C. E. Miller, P. L. DeCola, NASA Orbiting Carbon Observatory: Measuring the column averaged carbon dioxide mole fraction from space. J. Appl. Remote Sens. 2, 023508–023514 (2008).
19
D. Crisp, H. R. Pollock, R. Rosenberg, L. Chapsky, R. A. M. Lee, F. A. Oyafuso, C. Frankenberg, C. W. O’Dell, C. J. Bruegge, G. B. Doran, A. Eldering, B. M. Fisher, D. Fu, M. R. Gunson, L. Mandrake, G. B. Osterman, F. M. Schwandner, K. Sun, T. E. Taylor, P. O. Wennberg, D. Wunch, The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 10, 59–81 (2017).
20
H. Bösch, G. C. Toon, B. Sen, R. A. Washenfelder, P. O. Wennberg, M. Buchwitz, R. de Beek, J. P. Burrows, D. Crisp, M. Christi, B. J. Connor, V. Natraj, Y. L. Yung, Space‐based near‐infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin. J. Geophys. Res. D Atmos. 111, D23302 (2006).
21
C. O’Dell, B. Connor, H. Bösch, D. O’Brien, C. Frankenberg, R. Castano, M. Christi, D. Eldering, B. Fisher, M. Gunson, J. McDuffie, C. E. Miller, V. Natraj, F. Oyafuso, I. Polonsky, M. Smyth, T. Taylor, G. C. Toon, P. O. Wennberg, D. Wunch, The ACOS CO2 retrieval algorithm-Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 5, 99–121 (2012).
22
B. J. Connor, H. Boesch, G. Toon, B. Sen, C. Miller, D. Crisp, Orbiting Carbon Observatory: Inverse method and prospective error analysis. J. Geophys. Res. D Atmos. 113, D05305 (2008).
23
H. Boesch, D. Baker, B. Connor, D. Crisp, C. Miller, Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission. Remote Sens. 3, 270–304 (2011).
24
A. Eldering, C. W. O’Dell, P. O. Wennberg, D. Crisp, M. R. Gunson, C. Viatte, C. Avis, A. Braverman, R. Castano, A. Chang, L. Chapsky, C. Cheng, B. Connor, L. Dang, G. Doran, B. Fisher, C. Frankenberg, D. Fu, R. Granat, J. Hobbs, R. A. M. Lee, L. Mandrake, J. McDuffie, C. E. Miller, V. Myers, V. Natraj, D. O’Brien, G. B. Osterman, F. Oyafuso, V. H. Payne, H. R. Pollock, I. Polonsky, C. M. Roehl, R. Rosenberg, F. Schwandner, M. Smyth, V. Tang, T. E. Taylor, C. To, D. Wunch, J. Yoshimizu, The Orbiting Carbon Observatory-2: First 18 months of science data products. Atmos. Meas. Tech. 10, 549–563 (2017).
25
T. E. Taylor, C. W. O’Dell, C. Frankenberg, P. T. Partain, H. Q. Cronk, A. Savtchenko, R. R. Nelson, E. J. Rosenthal, A. Y. Chang, B. Fisher, G. B. Osterman, R. H. Pollock, D. Crisp, A. Eldering, M. R. Gunson, Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: Validation against collocated MODIS Inf. Serv. and CALIOP data. Atmos. Meas. Tech. 9, 973–989 (2016).
26
L. Mandrake et al., “Lite Files, Warn Levels, and Bias Correction Determination, Version 1,” JPL Technical Report (NASA Jet Propulsion Laboratory, California Institute of Technology, 2015).
27
D. Wunch, P. O. Wennberg, G. C. Toon, B. J. Connor, B. Fisher, G. B. Osterman, C. Frankenberg, L. Mandrake, C. O’Dell, P. Ahonen, S. C. Biraud, R. Castano, N. Cressie, D. Crisp, N. M. Deutscher, A. Eldering, M. L. Fisher, D. W. T. Griffith, M. Gunson, P. Heikkinen, G. Keppel-Aleks, E. Kyrö, R. Lindenmaier, R. Macatangay, J. Mendonca, J. Messerschmidt, C. E. Miller, I. Morino, J. Notholt, F. A. Oyafuso, M. Rettinger, J. Robinson, C. M. Roehl, R. J. Salawitch, V. Sherlock, K. Strong, R. Sussmann, T. Tanaka, D. R. Thompson, O. Uchino, T. Warneke, S. C. Wofsy, A method for evaluating bias in global measurements of CO2 total columns from space. Atmos. Chem. Phys. 11, 12317–12337 (2011).
28
D. Wunch, G. C. Toon, J.-F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, P. O. Wennberg, The total carbon column observing network. Philos. Trans. R. Soc. London Ser. A 369, 2087–2112 (2011).
29
D. Wunch et al., The Total Carbon Column Observing Network’s GGG2014 Data Version (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 2015).
30
D. Wunch, P. O. Wennberg, G. Osterman, B. Fisher, B. Naylor, C. M. Roehl, C. O&apos;Dell, L. Mandrake, C. Viatte, M. Kiel, D. W. T. Griffith, N. M. Deutscher, V. A. Velazco, J. Notholt, T. Warneke, C. Petri, M. De Maziere, M. K. Sha, R. Sussmann, M. Rettinger, D. Pollard, J. Robinson, I. Morino, O. Uchino, F. Hase, T. Blumenstock, D. G. Feist, S. G. Arnold, K. Strong, J. Mendonca, R. Kivi, P. Heikkinen, L. Iraci, J. Podolske, P. W. Hillyard, S. Kawakami, M. K. Dubey, H. A. Parker, E. Sepulveda, O. E. García, Y. Te, P. Jeseck, M. R. Gunson, D. Crisp, A. Eldering, Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech. 10, 2209–2238 (2017).
31
P. Ciais, M. Reichstein, N. Viovy, A. Granier, J. Ogée, V. Allard, M. Aubinet, N. Buchmann, C. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A. D. Friend, P. Friedlingstein, T. Grünwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Soussana, M. J. Sanz, E. D. Schulze, T. Vesala, R. Valentini, Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).
32
F. Chevallier, F. M. Bréon, P. J. Rayner, Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework. J. Geophys. Res. D Atmos. 112, D09307 (2007).
33
A. Chatterjee, M. M. Gierach, A. J. Sutton, R. A. Feely, D. Crisp, A. Eldering, M. R. Gunson, C. W. O’Dell, B. B. Stephens, D. S. Schimel, Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA’s OCO-2 mission. Science 358, eaam5776 (2017).
34
J. Hakkarainen, I. Ialongo, J. Tamminen, Direct space‐based observations of anthropogenic CO2 emission areas from OCO‐2. Geophys. Res. Lett. 43, 11400–11406 (2016).
35
J. Heymann, M. Reuter, M. Buchwitz, O. Schneising, H. Bovensmann, J. P. Burrows, S. Massart, J. W. Kaiser, D. Crisp, CO2 emission of Indonesian fires in 2015 estimated from satellite‐derived atmospheric CO2 concentrations. Geophys. Res. Lett. 44, 1537–1544 (2017).
36
J. Liu, K. W. Bowman, D. Schimel, N. C. Parazoo, Z. Jiang, M. Lee, A. A. Bloom, D. Wunch, C. Frankenberg, Y. Sun, C. W. O’Dell, K. R. Gurney, D. Menemenlis, M. Girerach, D. Crisp, A. Eldering, Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358, eaam5690 (2017).
37
Y. Sun, C. Frankenberg, J. D. Wood, D. S. Schimel, M. Jung, L. Guanter, D. T. Drewry, M. Verma, A. Porcar-Castell, T. J. Griffis, L. Gu, T. S. Magney, P. Köhler, B. Evans, K. Yuen, OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).
38
C. Frankenberg, A. Butz, G. Toon, Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A‐band spectra of reflected sun‐light. Geophys. Res. Lett. 38, L03801 (2011).
39
C. Frankenberg, J. B. Fisher, J. Worden, G. Badgley, S. S. Saatchi, J.-E. Lee, G. C. Toon, A. Butz, M. Jung, A. Kuze, T. Yokota, New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).
40
J. Joiner, Y. Yoshida, A. P. Vasilkov, Y. Yoshida, L. A. Corp, E. M. Middleton, First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651 (2011).
41
J. Joiner, Y. Yoshida, A. P. Vasilkov, E. M. Middleton, P. K. E. Campbell, Y. Yoshida, A. Kuze, L. A. Corp, Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: Simulations and space-based observations from SCIAMACHY and GOSAT. Atmos. Meas. Tech. 5, 809–829 (2012).
42
L. Guanter, C. Frankenberg, A. Dudhia, P. E. Lewis, J. Gómez-Dans, A. Kuze, H. Suto, R. G. Grainger, Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 121, 236–251 (2012).
43
C. Frankenberg, C. O’Dell, L. Guanter, J. McDuffie, Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: Implications for its retrieval and interferences with atmospheric CO2 retrievals. Atmos. Meas. Tech. 5, 2081–2094 (2012).
44
C. Frankenberg, C. O’Dell, J. Berry, L. Guanter, J. Joiner, P. Köhler, R. Pollock, T. E. Taylor, Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 147, 1–12 (2014).
45
L. E. Ott, S. Pawson, G. J. Collatz, W. W. Gregg, D. Menemenlis, H. Brix, C. S. Rousseaux, K. W. Bowman, J. Liu, A. Eldering, M. R. Gunson, S. R. Kawa, Assessing the magnitude of CO2 flux uncertainty in atmospheric CO2 records using products from NASA’s Carbon Monitoring Flux Pilot Project. J. Geophys. Res. D Atmos. 120, 734–765 (2015).
46
F. M. Schwandner, M. R. Gunson, C. E. Miller, S. A. Carn, A. Eldering, T. Krings, K. R. Verhulst, D. S. Schimel, H. M. Nguyen, D. Crisp, C. W. O’Dell, G. B. Osterman, L. T. Iraci, J. R. Podolske, Spaceborne detection of localized carbon dioxide sources. Science 358, eaam5782 (2017).
47
T. Oda, S. Maksyutov, A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 11, 543–556 (2011).
48
G. R. van der Werf, J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, T. T. van Leeuwen, Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).
49
L. Giglio, J. T. Randerson, G. R. van der Werf, Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).
50
T. T. van Leeuwen, G. R. van der Werf, A. A. Hoffmann, R. G. Detmers, G. Rücker, N. H. F. French, S. Archibald, J. A. Carvalho Jr.., G. D. Cook, W. J. de Groot, C. Hély, E. S. Kasischke, S. Kloster, J. L. McCarty, M. L. Pettinari, P. Savadogo, E. C. Alvarado, L. Boschetti, S. Manuri, C. P. Meyer, F. Siegert, L. A. Trollope, W. S. W. Trollope, Biomass burning fuel consumption rates: A field measurement database. Biogeosciences 11, 7305–7329 (2014).
51
S. Akagi, R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid, T. Karl, J. D. Crounse, P. O. Wennberg, Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 11, 4039–4072 (2011).
52
V. Huijnen, M. J. Wooster, J. W. Kaiser, D. L. A. Gaveau, J. Flemming, M. Parrington, A. Inness, D. Murdiyarso, B. Main, M. van Weele, Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886 (2016).
53
G. Roberts, M. Wooster, E. Lagoudakis, Annual and diurnal African biomass burning temporal dynamics. Biogeosciences Discuss. 5, 3623–3663 (2008).
54
Q. Wang et al., in Remote Sensing of the Environment: 19th National Symposium on Remote Sensing of China (International Society for Optics and Photonics, 2015), pp. 96690T-96690T-96696.
55
R. Bacastow, Modulation of atmospheric carbon dioxide by the Southern Oscillation. Nature 261, 116–118 (1976).
56
R. B. Bacastow, J. A. Adams, C. D. Keeling, D. J. Moss, T. P. Whorf, C. S. Wong, Atmospheric carbon dioxide, the southern oscillation, and the weak 1975 El Niño. Science 210, 66–68 (1980).
57
C. Keeling, R. Revelle, Effects of El Niño/Southern Oscillation on the atmospheric content of carbon dioxide. Meteoritics 20, 437–450 (1985).
58
C. D. Keeling, T. P. Whorf, M. Wahlen, J. van der Plichtt, Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).
59
M. L. Thompson, I. Enting, G. Pearman, P. Hyson, Interannual variation of atmospheric CO2 concentration. J. Atmos. Chem. 4, 125–155 (1986).
60
J. L. Sarmiento, N. Gruber, in Ocean Biogeochemical Dynamics (Princeton Univ. Press, Princeton, New Jersey, 2006), pp. 392–453.
61
M. J. McPhaden, A. J. Busalacchi, D. L. Anderson, A TOGA retrospective. Oceanography 23, 86–103 (2010).
62
N. C. Parazoo, K. Bowman, J. B. Fisher, C. Frankenberg, D. B. A. Jones, A. Cescatti, O. Pérez-Priego, G. Wohlfahrt, L. Montagnani, Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Glob. Chang. Biol. 20, 3103–3121 (2014).
63
Z. Jiang, D. B. A. Jones, H. M. Worden, M. N. Deeter, D. K. Henze, J. Worden, K. W. Bowman, C. A. M. Brenninkmeijer, T. J. Schuck, Impact of model errors in convective transport on CO source estimates inferred from MOPITT CO retrievals. J. Geophys. Res. D Atmos. 118, 2073–2083 (2013).
64
M. Chahine, L. Chen, P. Dimotakis, X. Jiang, Q. Li, E. T. Olsen, T. Pagano, J. Randerson, Y. L. Yung, Satellite remote sounding of mid‐tropospheric CO2. Geophys. Res. Lett. 35, L17807 (2008).
65
F. Chevallier, R. J. Engelen, C. Carouge, T. J. Conway, P. Peylin, C. Pickett-Heaps, M. Ramonet, P. J. Rayner, I. Xueref-Remy, AIRS‐based versus flask‐based estimation of carbon surface fluxes. J. Geophys. Res. D Atmos. 114, D20303 (2009).
66
F.-M. Bréon, P. Ciais, Spaceborne remote sensing of greenhouse gas concentrations. C. R. Geosci. 342, 412–424 (2010).
67
M. Buchwitz, M. Reuter, O. Schneising, W. Hewson, R. G. Detmers, H. Boesch, O. P. Hasekamp, I. Aben, H. Bovensmann, J. P. Burrows, A. Butz, F. Chevallier, B. Dils, C. Frankenberg, J. Heymann, G. Lichtenberg, M. De Mazière, J. Notholt, R. Parker, T. Warneke, C. Zehner, D. W. T. Griffith, N. M. Deutscher, A. Kuze, H. Suto, D. Wunch, Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set. Remote Sens. Environ. 2017, 10.1016/j.rse.2016.12.027 (2017).
68
M. Reuter, H. Bovensmann, M. Buchwitz, J. P. Burrows, B. J. Connor, N. M. Deutscher, D. W. T. Griffith, J. Heymann, G. Keppel-Aleks, J. Messerschmidt, J. Notholt, C. Petri, J. Robinson, O. Schneising, V. Sherlock, V. Velazco, T. Warneke, P. O. Wennberg, D. Wunch, Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results. J. Geophys. Res. D Atmos. 116, D04301 (2011).
69
M. Reuter, M. Buchwitz, O. Schneising, J. Heymann, H. Bovensmann, J. P. Burrows, A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds. Atmos. Meas. Tech. 3, 209–232 (2010).
70
O. Schneising, M. Buchwitz, M. Reuter, J. Heymann, H. Bovensmann, J. P. Burrows, Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmos. Chem. Phys. 11, 2863–2880 (2011).
71
A. Kuze, H. Suto, M. Nakajima, T. Hamazaki, Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 48, 6716–6733 (2009).
72
T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, S. Maksyutov, Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results. Sci. Online Lett. Atmos. 5, 160–163 (2009).
73
M. Buchwitz, M. Reuter, O. Schneising, H. Boesch, S. Guerlet, B. Dils, I. Aben, R. Armante, P. Bergamaschi, T. Blumenstock, H. Bovensmann, D. Brunner, B. Buchmann, J. P. Burrows, A. Butz, A. Chédin, F. Chevallier, C. D. Crevoisier, N. M. Deutscher, C. Frankenberg, F. Hase, O. P. Hasekamp, J. Heymann, T. Kaminski, A. Laeng, G. Lichtenberg, M. De Mazière, S. Noël, J. Notholt, J. Orphal, C. Popp, R. Parker, M. Scholze, R. Sussmann, G. P. Stiller, T. Warneke, C. Zehner, A. Bril, D. Crisp, D. W. T. Griffith, A. Kuze, C. O’Dell, S. Oshchepkov, V. Sherlock, H. Suto, P. Wennberg, D. Wunch, T. Yokota, Y. Yoshida, The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sens. Environ. 162, 344–362 (2015).
74
M. Reuter, H. Bösch, H. Bovensmann, A. Bril, M. Buchwitz, A. Butz, J. P. Burrows, C. W. O’Dell, S. Guerlet, O. Hasekamp, J. Heymann, N. Kikuchi, S. Oshchepkov, R. Parker, S. Pfeifer, O. Schneising, T. Yokota, Y. Yoshida, A joint effort to deliver satellite retrieved atmospheric CO2 concentrations for surface flux inversions: The ensemble median algorithm EMMA. Atmos. Chem. Phys. 13, 1771–1780 (2013).
75
H. Lindqvist, C. W. O’Dell, S. Basu, H. Boesch, F. Chevallier, N. Deutscher, L. Feng, B. Fisher, F. Hase, M. Inoue, R. Kivi, I. Morino, P. I. Palmer, R. Parker, M. Schneider, R. Sussmann, Y. Yoshida, Does GOSAT capture the true seasonal cycle of carbon dioxide? Atmos. Chem. Phys. 15, 13023–13040 (2015).
76
D. Wunch, P. O. Wennberg, J. Messerschmidt, N. C. Parazoo, G. C. Toon, N. M. Deutscher, G. Keppel-Aleks, C. M. Roehl, J. T. Randerson, T. Warneke, J. Notholt, The covariation of Northern Hemisphere summertime CO2 with surface temperature in boreal regions. Atmos. Chem. Phys. 13, 9447–9459 (2013).
77
S. Guerlet, S. Basu, A. Butz, M. Krol, P. Hahne, S. Houweling, O. P. Hasekamp, I. Aben, Reduced carbon uptake during the 2010 Northern Hemisphere summer from GOSAT. Geophys. Res. Lett. 40, 2378–2383 (2013).
78
S. Basu, M. Krol, A. Butz, C. Clerbaux, Y. Sawa, T. Machida, H. Matsueda, C. Frankenberg, O. P. Hasekamp, I. Aben, The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI. Geophys. Res. Lett. 41, 1809–1815 (2014).
79
R. Detmers, O. Hasekamp, I. Aben, S. Houweling, T. T. van Leeuwen, A. Butz, J. Landgraf, P. Köhler, L. Guanter, B. Poulter, Anomalous carbon uptake in Australia as seen by GOSAT. Geophys. Res. Lett. 42, 8177–8184 (2015).
80
A. N. Ross, M. J. Wooster, H. Bösch, R. Parker, First satellite measurements of carbon dioxide and methane emission ratios in wildfire plumes. Geophys. Res. Lett. 40, 4098–4102 (2013).
81
W. J. Larson, J. R. Wertz, “Space mission analysis and design” (Microcosm, Inc., Torrance, CA, 1992).
82
C. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, R. M. Law, Precision requirements for space‐based data. J. Geophys. Res. D Atmos. 112, D10314 (2007).
83
J. Joiner, Y. Yoshida, L. Guanter, E. M. Middleton, New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: Simulations and application to GOME-2 and SCIAMACHY. Atmos. Meas. Tech. Discuss. 9, 3939–3967 (2016).
84
J. Joiner, Y. Yoshida, A. P. Vasilkov, K. Schaefer, M. Jung, L. Guanter, Y. Zhang, S. Garrity, E. M. Middleton, K. F. Huemmrich, L. Gu, L. Belelli Marchesini, The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sens. Environ. 152, 375–391 (2014).
85
C. Frankenberg, R. Pollock, R. A. M. Lee, R. Rosenberg, J.-F. Blavier, D. Crisp, C. W. O’Dell, G. B. Osterman, C. Roehl, P. O. Wennberg, D. Wunch, The Orbiting Carbon Observatory (OCO-2): Spectrometer performance evaluation using pre-launch direct sun measurements. Atmos. Meas. Tech. 8, 301–313 (2015).
86
J. J. B. Kumer et al., in SPIE Optical Engineering+ Applications (International Society for Optics and Photonics, 2013), pp. 88670K-88670K-88616.
87
Y. Liu et al., in AGU Fall Meeting Abstracts (2012), vol. 1, pp. 01.
88
D. Liu, C. Zhang, Y. Li, X. Zhang, S. Wang, L. Zhang, P. Zhang, J. Chen, P. Rong, The retrieval algorithm for a satellite-borne CO2-sounder: Preliminary results in near infrared band. Optik-International Journal for Light and Electron Optics 127, 8613–8620 (2016).
89
M. Nakajima, A. Kuze, H. Suto, in SPIE 8533, Sensors, Systems, and Next-Generation Satellites XVI (International Society for Optics and Photonics, 2012), pp. 853306–853310.
90
C. Buil et al., in SPIE Remote Sensing (International Society for Optics and Photonics, 2011), pp. 817621-817621-817611.
91
L. Guanter, I. Aben, P. Tol, J. M. Krijger, A. Hollstein, P. Köhler, A. Damm, J. Joiner, C. Frankenberg, J. Landgraf, Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmos. Meas. Tech. 8, 1337–1352 (2015).
92
S. Cogliati, W. Verhoef, S. Kraft, N. Sabater, L. Alonso, J. Vicent, J. Moreno, M. Drusch, R. Colombo, Retrieval of sun-induced fluorescence using advanced spectral fitting methods. Remote Sens. Environ. 169, 344–357 (2015).

Information & Authors

Information

Published In

Science
Volume 358 | Issue 6360
13 October 2017

Submission history

Received: 11 December 2016
Accepted: 12 July 2017
Published in print: 13 October 2017

Permissions

Request permissions for this article.

Acknowledgments

Retrieved Level 2 OCO-2 XCO2 (version v7Br) data used in this study are archived in a permanent repository at NASA’s Goddard Space Flight Center’s Earth Sciences Data and Information Services Center (GES-DISC) and are also available at NASA’s Jet Propulsion Laboratory (http://co2.jpl.nasa.gov). Part of the research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The movie was created by B. Weir, L. Ott, S. Pawson, H. Mitchell, and G. Shirah at Goddard Space Flight Center and the Scientific Visualization Studio. B.W., L.O., and S.P. were supported by the NASA Carbon Monitoring System and the OCO-2 Science Team NASA Research Opportunities in Space and Earth Sciences (ROSES) projects. K. Yuen assisted with figure production. J.H. and J.T. were supported by the Academy of Finland Inversion Algorithms and Quantification of Uncertainties in Atmospheric Remote Sensing (INQUIRE) (grant number 267442) and Carbon Balance under Changing Processes if Arctic and Subarctic Cryosphere (CARB-ARC) (grant number 285630) projects.

Authors

Affiliations

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
Division of Geology and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
D. S. Schimel
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
M. R. Gunson
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
Universities Space Research Association, Columbia, MD, USA.
NASA Global Modeling and Assimilation Office, Greenbelt, MD, USA.
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
C. W. O’Dell
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA.
Division of Geology and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA.
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
Division of Geology and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
Present address: University of Toronto, Department of Physics, Toronto, Ontario, Canada.
J. Hakkarainen
Finnish Meteorological Institute, Earth Observation, Helsinki, Finland.
Finnish Meteorological Institute, Earth Observation, Helsinki, Finland.
Universities Space Research Association, Columbia, MD, USA.
NASA Global Modeling and Assimilation Office, Greenbelt, MD, USA.

Funding Information

Finnish Academy: award333610, 267442
Finnish Academy: award333611, 285360

Notes

*
Corresponding author. Email: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Evaluation of CarbonTracker's Inverse Estimates of North American Net Ecosystem Exchange of CO 2 From Different Observing Systems Using ACT‐America Airborne Observations , Journal of Geophysical Research: Atmospheres, 126, 12, (2021).https://doi.org/10.1029/2020JD034406
    Crossref
  2. References, Collisional Effects on Molecular Spectra, (485-551), (2021).https://doi.org/10.1016/B978-0-12-822364-2.00020-9
    Crossref
  3. Biotechnology for carbon capture and fixation: Critical review and future directions, Journal of Environmental Management, 293, (112830), (2021).https://doi.org/10.1016/j.jenvman.2021.112830
    Crossref
  4. Urban-focused satellite CO2 observations from the Orbiting Carbon Observatory-3: A first look at the Los Angeles megacity, Remote Sensing of Environment, 258, (112314), (2021).https://doi.org/10.1016/j.rse.2021.112314
    Crossref
  5. Unusual characteristics of the carbon cycle during the 2015−2016 El Niño, Global Change Biology, 27, 16, (3798-3809), (2021).https://doi.org/10.1111/gcb.15669
    Crossref
  6. Carbon-dioxide absorption spectroscopy with solar photon counting and integrated lithium niobate micro-ring resonator, Applied Physics Letters, 118, 17, (171103), (2021).https://doi.org/10.1063/5.0045869
    Crossref
  7. Quantifying CO 2 Uptakes Over Oceans Using LIDAR: A Tentative Experiment in Bohai Bay , Geophysical Research Letters, 48, 9, (2021).https://doi.org/10.1029/2020GL091160
    Crossref
  8. The update of the line positions and intensities in the line list of carbon dioxide for the HITRAN2020 spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, (107896), (2021).https://doi.org/10.1016/j.jqsrt.2021.107896
    Crossref
  9. Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models, Environmental Research Letters, 16, 5, (054041), (2021).https://doi.org/10.1088/1748-9326/abfac1
    Crossref
  10. An assessment of emission characteristics of Northern Hemisphere cities using spaceborne observations of CO2, CO, and NO2, Remote Sensing of Environment, 254, (112246), (2021).https://doi.org/10.1016/j.rse.2020.112246
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media