Advertisement
No access
Review

Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being

Gretta T. Pecl https://orcid.org/0000-0003-0192-4339 [email protected], Miguel B. Araújo https://orcid.org/0000-0002-5107-7265, Johann D. Bell, Julia Blanchard https://orcid.org/0000-0003-0532-4824, Timothy C. Bonebrake, I-Ching Chen https://orcid.org/0000-0002-1909-7290, Timothy D. Clark https://orcid.org/0000-0001-8738-3347, Robert K. Colwell https://orcid.org/0000-0002-1384-0354, Finn Danielsen, Birgitta Evengård https://orcid.org/0000-0003-4843-8039, Lorena Falconi https://orcid.org/0000-0002-4766-0327, Simon Ferrier https://orcid.org/0000-0001-7884-2388, Stewart Frusher https://orcid.org/0000-0003-2493-3676, Raquel A. Garcia https://orcid.org/0000-0001-6523-0585, Roger B. Griffis, Alistair J. Hobday https://orcid.org/0000-0002-3194-8326, Charlene Janion-Scheepers https://orcid.org/0000-0001-5942-7912, Marta A. Jarzyna https://orcid.org/0000-0002-6734-0566, Sarah Jennings https://orcid.org/0000-0002-5760-4193, Jonathan Lenoir https://orcid.org/0000-0003-0638-9582, Hlif I. Linnetved https://orcid.org/0000-0002-2278-645X, Victoria Y. Martin https://orcid.org/0000-0003-3492-9240, Phillipa C. McCormack, Jan McDonald https://orcid.org/0000-0002-7953-1458, Nicola J. Mitchell https://orcid.org/0000-0003-0744-984X, Tero Mustonen https://orcid.org/0000-0002-2023-9065, John M. Pandolfi https://orcid.org/0000-0003-3047-6694, Nathalie Pettorelli https://orcid.org/0000-0002-1594-6208, Ekaterina Popova https://orcid.org/0000-0002-2012-708X, Sharon A. Robinson https://orcid.org/0000-0002-7130-9617, Brett R. Scheffers https://orcid.org/0000-0003-2423-3821, Justine D. Shaw, Cascade J. B. Sorte https://orcid.org/0000-0003-0952-951X, Jan M. Strugnell https://orcid.org/0000-0003-2994-637X, Jennifer M. Sunday, Mao-Ning Tuanmu https://orcid.org/0000-0002-8233-2935, Adriana Vergés https://orcid.org/0000-0002-3507-1234, Cecilia Villanueva https://orcid.org/0000-0001-9694-3131, Thomas Wernberg https://orcid.org/0000-0003-1185-9745, Erik Wapstra https://orcid.org/0000-0002-2050-8026, and Stephen E. WilliamsAuthors Info & Affiliations
Science
31 Mar 2017
Vol 355, Issue 6332

Consequences of shifting species distributions

Climate change is causing geographical redistribution of plant and animal species globally. These distributional shifts are leading to new ecosystems and ecological communities, changes that will affect human society. Pecl et al. review these current and future impacts and assess their implications for sustainable development goals.
Science, this issue p. eaai9214

Structured Abstract

BACKGROUND

The success of human societies depends intimately on the living components of natural and managed systems. Although the geographical range limits of species are dynamic and fluctuate over time, climate change is impelling a universal redistribution of life on Earth. For marine, freshwater, and terrestrial species alike, the first response to changing climate is often a shift in location, to stay within preferred environmental conditions. At the cooler extremes of their distributions, species are moving poleward, whereas range limits are contracting at the warmer range edge, where temperatures are no longer tolerable. On land, species are also moving to cooler, higher elevations; in the ocean, they are moving to colder water at greater depths. Because different species respond at different rates and to varying degrees, key interactions among species are often disrupted, and new interactions develop. These idiosyncrasies can result in novel biotic communities and rapid changes in ecosystem functioning, with pervasive and sometimes unexpected consequences that propagate through and affect both biological and human communities.

ADVANCES

At a time when the world is anticipating unprecedented increases in human population growth and demands, the ability of natural ecosystems to deliver ecosystem services is being challenged by the largest climate-driven global redistribution of species since the Last Glacial Maximum. We demonstrate the serious consequences of this species redistribution for economic development, livelihoods, food security, human health, and culture, and we document feedbacks on climate itself. As with other impacts of climate change, species range shifts will leave “winners” and “losers” in their wake, radically reshaping the pattern of human well-being between regions and different sectors and potentially leading to substantial conflict. The pervasive impacts of changes in species distribution transcend single systems or dimensions, with feedbacks and linkages between multiple interacting scales and through whole ecosystems, inclusive of humans. We argue that the negative effects of climate change cannot be adequately anticipated or prepared for unless species responses are explicitly included in decision-making and global strategic frameworks.

OUTLOOK

Despite mounting evidence for the pervasive and substantial impacts of a climate-driven redistribution of Earth’s species, current global goals, policies, and international agreements fail to account for these effects. With the predicted intensification of species movements and their diverse societal and environmental impacts, awareness of species “on the move” should be incorporated into local, regional, and global assessments as standard practice. This will raise hope that future targets—whether they be global sustainability goals, plans for regional biodiversity maintenance, or local fishing or forestry harvest strategies—can be achievable and that society is prepared for a world of universal ecological change. Human society has yet to appreciate the implications of unprecedented species redistribution for life on Earth, including for human lives. Even if greenhouse gas emissions stopped today, the responses required in human systems to adapt to the most serious effects of climate-driven species redistribution would be massive. Meeting these challenges requires governance that can anticipate and adapt to changing conditions, as well as minimize negative consequences.
As the global climate changes, human well-being, ecosystem function, and even climate itself are increasingly affected by the shifting geography of life.
Climate-driven changes in species distributions, or range shifts, affect human well-being both directly (for example, through emerging diseases and changes in food supply) and indirectly (by degrading ecosystem health). Some range shifts even create feedbacks (positive or negative) on the climate system, altering the pace of climate change.

Abstract

Distributions of Earth’s species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation’s Sustainable Development Goals.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Tables S1 and S2
References (118135)

Resources

File (pecl.sm.pdf)

References and Notes

1
M. B. Davis, R. G. Shaw, Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001). 10.1126/science.292.5517.673
2
B. R. Rosen, “Reef coral biogeography and climate through the late Cainozoic: Just islands in the sun or a critical pattern of islands” in Fossils and Climate, P. J. Brenchley, Ed. (Geol. J. Special Issue 11, Wiley, Chichester, 1984), pp. 201–262.
3
N. S. Diffenbaugh, C. B. Field, Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013). 10.1126/science.1237123
4
D. B. Kemp, K. Eichenseer, W. Kiessling, Maximum rates of climate change are systematically underestimated in the geological record. Nat. Commun. 6, 8890 (2015). 10.1038/ncomms9890
5
I.-C. Chen, J. K. Hill, R. Ohlemüller, D. B. Roy, C. D. Thomas, Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011). 10.1126/science.1206432
6
E. S. Poloczanska, C. J. Brown, W. J. Sydeman, W. Kiessling, D. S. Schoeman, P. J. Moore, K. Brander, J. F. Bruno, L. B. Buckley, M. T. Burrows, C. M. Duarte, B. S. Halpern, J. Holding, C. V. Kappel, M. I. O’Connor, J. M. Pandolfi, C. Parmesan, F. Schwing, S. A. Thompson, A. J. Richardson, Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013). 10.1038/nclimate1958
7
Conservation of Arctic Flora and Fauna (CAFF), “Arctic biodiversity assessment: Report for policy makers” (CAFF, 2013); www.arcticbiodiversity.is/the-report/report-for-policy-makers.
8
J. Lenoir, J. C. Svenning, Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015). 10.1111/ecog.00967
9
A. M. Lawing, P. D. Polly, Pleistocene climate, phylogeny, and climate envelope models: An integrative approach to better understand species’ response to climate change. PLOS ONE 6, e28554 (2011). 10.1371/journal.pone.0028554
10
Intergovernmental Panel on Climate Change (IPCC), “Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change” (IPCC, 2014); www.ipcc.ch/report/ar5/syr/.
11
United Nations Framework Convention on Climate Change Conference of Parties (COP), “Paris Agreement FCCC/CP/2015/L.9/Rev.1” (2015); http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf.
12
S. E. Williams, L. P. Shoo, J. L. Isaac, A. A. Hoffmann, G. Langham, Towards an integrated framework for assessing the vulnerability of species to climate change. PLOS Biol. 6, 2621–2626 (2008). 10.1371/journal.pbio.0060325
13
A. E. Bates, G. T. Pecl, S. Frusher, A. J. Hobday, T. Wernberg, D. A. Smale, J. M. Sunday, N. A. Hill, N. K. Dulvy, R. K. Colwell, N. J. Holbrook, E. A. Fulton, D. Slawinski, M. Feng, G. J. Edgar, B. T. Radford, P. A. Thompson, R. A. Watson, Defining and observing stages of climate-mediated range shifts in marine systems. Glob. Environ. Change 26, 27–38 (2014). 10.1016/j.gloenvcha.2014.03.009
14
A. T. Peterson et al., Ecological Niches And Geographic Distributions (MPB-49). Monographs in Population Biology (Princeton Univ. Press, 2011).
15
M. P. Berg, T. Kiers, G. Driessen, M. A. R. C. E. L. van der Heijden, B. W. Kooi, F. Kuenen, M. Liefting, H. A. Verhoef, J. Ellers, Adapt or disperse: Understanding species persistence in a changing world. Glob. Change Biol. 16, 587–598 (2010). 10.1111/j.1365-2486.2009.02014.x
16
C. J. B. Sorte, S. L. Williams, J. T. Carlton, Marine range shifts and species introductions: Comparative spread rates and community impacts. Glob. Ecol. Biogeogr. 19, 303–316 (2010). 10.1111/j.1466-8238.2009.00519.x
17
I.-C. Chen, H.-J. Shiu, S. Benedick, J. D. Holloway, V. K. Chey, H. S. Barlow, J. K. Hill, C. D. Thomas, Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl. Acad. Sci. U.S.A. 106, 1479–1483 (2009). 10.1073/pnas.0809320106
18
N. K. Dulvy, S. I. Rogers, S. Jennings, V. Stelzenmller, S. R. Dye, H. R. Skjoldal, Climate change and deepening of the North Sea fish assemblage: A biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008). 10.1111/j.1365-2664.2008.01488.x
19
B. R. Scheffers, T. A. Evans, S. E. Williams, D. P. Edwards, Microhabitats in the tropics buffer temperature in a globally coherent manner. Biol. Lett. 10, 20140819 (2014). 10.1098/rsbl.2014.0819
20
J. Lenoir, J.-C. Gégout, A. Guisan, P. Vittoz, T. Wohlgemuth, N. E. Zimmermann, S. Dullinger, H. Pauli, W. Willner, J.-C. Svenning, Going against the flow: Potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33, 295–303 (2010).10.1111/j.1600-0587.2010.06279.x
21
F. Valladares, S. Matesanz, F. Guilhaumon, M. B. Araújo, L. Balaguer, M. Benito-Garzón, W. Cornwell, E. Gianoli, M. van Kleunen, D. E. Naya, A. B. Nicotra, H. Poorter, M. A. Zavala, The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014). 10.1111/ele.12348
22
M. B. Araújo, F. Ferri-Yáñez, F. Bozinovic, P. A. Marquet, F. Valladares, S. L. Chown, Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013). 10.1111/ele.12155
23
S. E. Gilman, M. C. Urban, J. Tewksbury, G. W. Gilchrist, R. D. Holt, A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010). 10.1016/j.tree.2010.03.002
24
A. Vergés, P. D. Steinberg, M. E. Hay, A. G. B. Poore, A. H. Campbell, E. Ballesteros, K. L. Heck Jr., D. J. Booth, M. A. Coleman, D. A. Feary, W. Figueira, T. Langlois, E. M. Marzinelli, T. Mizerek, P. J. Mumby, Y. Nakamura, M. Roughan, E. van Sebille, A. S. Gupta, D. A. Smale, F. Tomas, T. Wernberg, S. K. Wilson, The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. London Ser. B 281, 20140846 (2014). 10.1098/rspb.2014.0846
25
A. E. Cahill, M. E. Aiello-Lammens, M. C. Fisher-Reid, X. Hua, C. J. Karanewsky, H. Y. Ryu, G. C. Sbeglia, F. Spagnolo, J. B. Waldron, O. Warsi, J. J. Wiens, How does climate change cause extinction? Proc. R. Soc. London Ser. B 280, 20121890 (2013). 23075836
26
R. B. Aronson, K. E. Smith, S. C. Vos, J. B. McClintock, M. O. Amsler, P.-O. Moksnes, D. S. Ellis, J. Kaeli, H. Singh, J. W. Bailey, J. C. Schiferl, R. van Woesik, M. A. Martin, B. V. Steffel, M. E. Deal, S. M. Lazarus, J. N. Havenhand, R. Swalethorp, S. Kjellerup, S. Thatje, No barrier to emergence of bathyal king crabs on the Antarctic shelf. Proc. Natl. Acad. Sci. U.S.A. 112, 12997–13002 (2015). 10.1073/pnas.1513962112
27
O. E. Sala, F. S. Chapin III, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, D. H. Wall, Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000). 10.1126/science.287.5459.1770
28
P. L. Zarnetske, D. K. Skelly, M. C. Urban, Biotic multipliers of climate change. Science 336, 1516–1518 (2012). 10.1126/science.1222732
29
K. C. Cavanaugh, J. R. Kellner, A. J. Forde, D. S. Gruner, J. D. Parker, W. Rodriguez, I. C. Feller, Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. U.S.A. 111, 723–727 (2014). 10.1073/pnas.1315800111
30
A. Vergés, C. Doropoulos, H. A. Malcolm, M. Skye, M. Garcia-Pizá, E. M. Marzinelli, A. H. Campbell, E. Ballesteros, A. S. Hoey, A. Vila-Concejo, Y.-M. Bozec, P. D. Steinberg, Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. U.S.A. 113, 13791–13796 (2016). 10.1073/pnas.1610725113
31
T. Wernberg, S. Bennett, R. C. Babcock, T. de Bettignies, K. Cure, M. Depczynski, F. Dufois, J. Fromont, C. J. Fulton, R. K. Hovey, E. S. Harvey, T. H. Holmes, G. A. Kendrick, B. Radford, J. Santana-Garcon, B. J. Saunders, D. A. Smale, M. S. Thomsen, C. A. Tuckett, F. Tuya, M. A. Vanderklift, S. Wilson, Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016). 10.1126/science.aad8745
32
A. S. Weed, M. P. Ayres, J. A. Hicke, Consequences of climate change for biotic disturbances in North American forests. Ecol. Monogr. 83, 441–470 (2013). 10.1890/13-0160.1
33
M. Fossheim, R. Primicerio, E. Johannesen, R. B. Ingvaldsen, M. M. Aschan, A. V. Dolgov, Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Chang. 5, 673–677 (2015). 10.1038/nclimate2647
34
H. W. Paerl, V. J. Paul, Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012). 10.1016/j.watres.2011.08.002
35
L. M. Ochoa-Ochoa, P. Rodríguez, F. Mora, O. Flores-Villela, R. J. Whittaker, Climate change and amphibian diversity patterns in Mexico. Biol. Conserv. 150, 94–102 (2012).10.1016/j.biocon.2012.03.010
36
L. Buisson, G. Grenouillet, S. Villéger, J. Canal, P. Laffaille, Toward a loss of functional diversity in stream fish assemblages under climate change. Global Change Biol. 19, 387–400 (2013). 10.1111/gcb.12056
37
T. H. Oliver, M. S. Heard, N. J. B. Isaac, D. B. Roy, D. Procter, F. Eigenbrod, R. Freckleton, A. Hector, C. D. L. Orme, O. L. Petchey, V. Proença, D. Raffaelli, K. B. Suttle, G. M. Mace, B. Martín-López, B. A. Woodcock, J. M. Bullock, Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015). 10.1016/j.tree.2015.08.009
38
J. R. Malcolm, C. Liu, R. P. Neilson, L. Hansen, L. Hannah, Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2006). 10.1111/j.1523-1739.2006.00364.x
39
I. M. D. Maclean, R. J. Wilson, Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl. Acad. Sci. U.S.A. 108, 12337–12342 (2011). 10.1073/pnas.1017352108
40
M. C. Urban, Accelerating extinction risk from climate change. Science 348, 571–573 (2015). 10.1126/science.aaa4984
41
H. M. Pereira, S. Ferrier, M. Walters, G. N. Geller, R. H. G. Jongman, R. J. Scholes, M. W. Bruford, N. Brummitt, S. H. M. Butchart, A. C. Cardoso, N. C. Coops, E. Dulloo, D. P. Faith, J. Freyhof, R. D. Gregory, C. Heip, R. Höft, G. Hurtt, W. Jetz, D. S. Karp, M. A. McGeoch, D. Obura, Y. Onoda, N. Pettorelli, B. Reyers, R. Sayre, J. P. W. Scharlemann, S. N. Stuart, E. Turak, M. Walpole, M. Wegmann, Essential biodiversity variables. Science 339, 277–278 (2013). 10.1126/science.1229931
42
S. Dullinger, A. Gattringer, W. Thuiller, D. Moser, N. E. Zimmermann, A. Guisan, W. Willner, C. Plutzar, M. Leitner, T. Mang, M. Caccianiga, T. Dirnböck, S. Ertl, A. Fischer, J. Lenoir, J.-C. Svenning, A. Psomas, D. R. Schmatz, U. Silc, P. Vittoz, K. Hülber, Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Chang. 2, 619–622 (2012). 10.1038/nclimate1514
43
J. A. E. Stewart, J. D. Perrine, L. B. Nichols, J. H. Thorne, C. I. Millar, K. E. Goehring, C. P. Massing, D. H. Wright, Revisiting the past to foretell the future: Summer temperature and habitat area predict pika extirpations in California. J. Biogeogr. 42, 880–890 (2015). 10.1111/jbi.12466
44
I. Gynther, N. Waller, L. K.-P. Leung, “Confirmation of the extinction of the Bramble Cay melomys Melomys rubicola on Bramble Cay, Torres Strait: Results and conclusions from a comprehensive survey in August–September 2014” (Report to the Department of Environment and Heritage Protection, Queensland Government, Brisbane, 2016); www.ehp.qld.gov.au/wildlife/threatened-species/documents/bramble-cay-melomys-survey-report.pdf.
45
S. Finnegan, S. C. Anderson, P. G. Harnik, C. Simpson, D. P. Tittensor, J. E. Byrnes, Z. V. Finkel, D. R. Lindberg, L. H. Liow, R. Lockwood, H. K. Lotze, C. R. McClain, J. L. McGuire, A. O’Dea, J. M. Pandolfi, Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348, 567–570 (2015). 10.1126/science.aaa6635
46
C. J. Brown, M. I. O’Connor, E. S. Poloczanska, D. S. Schoeman, L. B. Buckley, M. T. Burrows, C. M. Duarte, B. S. Halpern, J. M. Pandolfi, C. Parmesan, A. J. Richardson, Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Global Change Biol. 22, 1548–1560 (2016). 10.1111/gcb.13184
47
J. S. Compton, Pleistocene sea-level fluctuations and human evolution on the southern coastal plain of South Africa. Quat. Sci. Rev. 30, 506–527 (2011). 10.1016/j.quascirev.2010.12.012
48
J. D. Bell,A. Ganachaud, P. C. Gehrke, S. P. Griffiths, A. J. Hobday, O. Hoegh-Guldberg, J. E. Johnson, R. Le Borgne, P. Lehodey, J. M. Lough, R. J. Matear, T. D. Pickering, M.S. Pratchett, A.S. Gupta, I. Senina, M. Waycott, Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. Clim. Chang. 3, 591–599 (2013). 10.1038/nclimate1838
49
M. Hanewinkel, D. A. Cullmann, M.-J. Schelhaas, G.-J. Nabuurs, N. E. Zimmermann, Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 3, 203–207 (2013). 10.1038/nclimate1687
50
E. Civantos, W. Thuiller, L. Maiorano, A. Guisan, M. B. Araújo, Potential impacts of climate change on ecosystem services in Europe: The case of pest control by vertebrates. Bioscience 62, 658–666 (2012). 10.1525/bio.2012.62.7.8
51
B. M. Campbell, S. J. Vermeulen, P. K. Aggarwal, C. Corner-Dolloff, E. Girvetz, A. M. Loboguerrero, J. Ramirez-Villegas, T. Rosenstock, L. Sebastian, P. K. Thornton, E. Wollenberg, Reducing risks to food security from climate change. Glob. Food Secur. 11, 34–43 (2016). 10.1016/j.gfs.2016.06.002
52
M. Baca, P. Läderach, J. Haggar, G. Schroth, O. Ovalle, An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica. PLOS ONE 9, e88463 (2014). 10.1371/journal.pone.0088463
53
D. C. Gledhill, A. J. Hobday, D. J. Welch, S. G. Sutton, M. J. Lansdell, M. Koopman, A. Jeloudev, A. Smith, P. R. Last, Collaborative approaches to accessing and utilising historical citizen science data: A case-study with spearfishers from eastern Australia. Mar. Freshw. Res. 66, 195–201 (2014). 10.1071/MF14071
54
J. Ruiz, L. Prieto, D. Astorga, A model for temperature control of jellyfish (Cotylorhiza tuberculata) outbreaks: A causal analysis in a Mediterranean coastal lagoon. Ecol. Modell. 233, 59–69 (2012). 10.1016/j.ecolmodel.2012.03.019
55
S. D. Ling, C. R. Johnson, S. D. Frusher, K. R. Ridgway, Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. U.S.A. 106, 22341–22345 (2009). 10.1073/pnas.0907529106
56
T. Mustonen, Communal visual histories to detect environmental change in northern areas: Examples of emerging North American and Eurasian practices. Ambio 44, 766–777 (2015). 10.1007/s13280-015-0671-7
57
K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, P. Daszak, Global trends in emerging infectious diseases. Nature 451, 990–993 (2008). 10.1038/nature06536
58
X. Wu, Y. Lu, S. Zhou, L. Chen, B. Xu, Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 86, 14–23 (2016). 10.1016/j.envint.2015.09.007
59
World Health Organization (WHO), “Malaria fact sheet,” (WHO, 2016); www.who.int/mediacentre/factsheets/fs094/en/.
60
A. S. Siraj, M. Santos-Vega, M. J. Bouma, D. Yadeta, D. Ruiz Carrascal, M. Pascual, Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343, 1154–1158 (2014). 10.1126/science.1244325
61
L. V. Weatherdon, A. K. Magnan, A. D. Rogers, U. R. Sumaila, W. W. L. Cheung, Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: An update. Front. Mater. Sci. 3, 48 (2016). 10.3389/fmars.2016.00048
62
J. J. Wiens, Climate-related local extinctions are already widespread among plant and animal species. PLOS Biol. 14, e2001104 (2016). 10.1371/journal.pbio.2001104
63
O. S. Astthorsson, H. Valdimarsson, A. Gudmundsdottir, G. J. Óskarsson, Climate-related variations in the occurrence and distribution of mackerel (Scomber scombrus) in Icelandic waters. ICES J. Mar. Sci. 69, 1289–1297 (2012). 10.1093/icesjms/fss084
64
M. Brambilla, P. Pedrini, A. Rolando, D. E. Chamberlain, Climate change will increase the potential conflict between skiing and high-elevation bird species in the Alps. J. Biogeogr. 43, 2299–2309 (2016). 10.1111/jbi.12796
65
I. C. Prentice, S. Williams, P. Friedlingstein, “Biosphere feedbacks and climate change” (Grantham Institute Briefing paper no. 12, Imperial College London, 2015).
66
W. V. Reid, D. Chen, L. Goldfarb, H. Hackmann, Y. T. Lee, K. Mokhele, E. Ostrom, K. Raivio, J. Rockström, H. J. Schellnhuber, A. Whyte, Environment and development. Earth system science for global sustainability: Grand challenges. Science 330, 916–917 (2010). 10.1126/science.1196263
67
F. S. Chapin 3rd, M. Sturm, M. C. Serreze, J. P. McFadden, J. R. Key, A. H. Lloyd, A. D. McGuire, T. S. Rupp, A. H. Lynch, J. P. Schimel, J. Beringer, W. L. Chapman, H. E. Epstein, E. S. Euskirchen, L. D. Hinzman, G. Jia, C. L. Ping, K. D. Tape, C. D. Thompson, D. A. Walker, J. M. Welker, Role of land-surface changes in arctic summer warming. Science 310, 657–660 (2005). 10.1126/science.1117368
68
R. G. Pearson, S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, S. J. Goetz, Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Chang. 3, 673–677 (2013). 10.1038/nclimate1858
69
A. L. Swann, I. Y. Fung, S. Levis, G. B. Bonan, S. C. Doney, Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl. Acad. Sci. U.S.A. 107, 1295–1300 (2010). 10.1073/pnas.0913846107
70
M. P. Cox, R. A. Betts, M. Collins, P. P. Harris, C. Huntingford, C. D. Jones, Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol. 78, 137–156 (2004). 10.1007/s00704-004-0049-4
71
R. A. Garcia, M. Cabeza, C. Rahbek, M. B. Araújo, Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014). 10.1126/science.1247579
72
T. J. Cudmore, N. Björklund, A. L. Carroll, B. Staffan Lindgren, Climate change and range expansion of an aggressive bark beetle: Evidence of higher beetle reproduction in naïve host tree populations. J. Appl. Ecol. 47, 1036–1043 (2010). 10.1111/j.1365-2664.2010.01848.x
73
E. S. Kasischke, M. R. Turetsky, Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).10.1029/2006GL025677
74
J. Chen, S. C. Saunders, T. R. Crow, R. J. Naiman, K. D. Brosofske, G. D. Mroz, B. L. Brookshire, J. F. Franklin, Microclimate in forest ecosystem and landscape ecology: Variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience 49, 288–297 (1999). 10.2307/1313612
75
D. Blok, G. Schaepman-Strub, H. Bartholomeus, M. M. P. D. Heijmans, T. C. Maximov, F. Berendse, The response of Arctic vegetation to the summer climate: Relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 6, 035502 (2011). 10.1088/1748-9326/6/3/035502
76
C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. Wallace, B. Tilbrook, F. J. Millero, T. H. Peng, A. Kozyr, T. Ono, A. F. Rios, The oceanic sink for anthropogenic CO­2. Science 305, 367–371 (2004). 10.1126/science.1097403
77
A. Yool, E. E. Popova, A. C. Coward, Future change in ocean productivity: Is the Arctic the new Atlantic? J. Geophys. Res. 120, 7771–7790 (2015). 10.1002/2015JC011167
78
J. J. Polovina, P. A. Woodworth, Declines in phytoplankton cell size in the subtropical oceans estimated from satellite remotely-sensed temperature and chlorophyll, 1998–2007. Deep Sea Res. Part II 77-80, 82–88 (2012). 10.1016/j.dsr2.2012.04.006
79
K. E. Kohfeld, C. Le Quéré, S. P. Harrison, R. F. Anderson, Role of marine biology in glacial-interglacial CO2 cycles. Science 308, 74–78 (2005). 10.1126/science.1105375
80
P. C. Reid, A. C. Fischer, E. Lewis-Brown, M. P. Meredith, M. Sparrow, A. J. Andersson, A. Antia, N. R. Bates, U. Bathmann, G. Beaugrand, H. Brix, S. Dye, M. Edwards, T. Furevik, R. Gangstø, H. Hátún, R. R. Hopcroft, M. Kendall, S. Kasten, R. Keeling, C. Le Quéré, F. T. Mackenzie, G. Malin, C. Mauritzen, J. Ólafsson, C. Paull, E. Rignot, K. Shimada, M. Vogt, C. Wallace, Z. Wang, R. Washington, Chapter 1. Impacts of the oceans on climate change. Adv. Mar. Biol. 56, 1–150 (2009). 10.1016/S0065-2881(09)56001-4
81
O. W. Wingenter, K. B. Haase, M. Zeigler, D. R. Blake, F. S. Rowland, B. C. Sive, A. Paulino, R. Thyrhaug, A. Larsen, K. Schulz, M. Meyerhöfer, U. Riebesell, Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: Potential climate impacts. Geophys. Res. Lett. 34, L05710 (2007). 10.1029/2006GL028139
82
J. H. Martin, Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography 5, 1–13 (1990). 10.1029/PA005i001p00001
83
S. A. Robinson, D. J. Erickson III, Not just about sunburn—The ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems. Global Change Biol. 21, 515–527 (2015). 10.1111/gcb.12739
84
P. McCormack, J. McDonald, Adaptation strategies for biodiversity conservation: Has Australian law got what it takes? Environ. Plann. Law J. 31, 114–136 (2014).
85
A. A. Burbidge, M. Byrne, D. Coates, S. T. Garnett, S. Harris, M. W. Hatward, T. G. Martin, E. McDonald-Madden, N. J. Mitchell, S. Nally, S. A. Setterfield, Is Australia ready for assisted colonization? Policy changes required to facilitate translocations under climate change. Pac. Conserv. Biol. 17, 259–269 (2011). 10.1071/PC110259
86
A. Ricciardi, D. Simberloff, Assisted colonization: Good intentions and dubious risk assessment. Trends Ecol. Evol. 24, 476–477 (2009). 10.1016/j.tree.2009.05.005
87
A. Reside et al., “Climate change refugia for terrestrial biodiversity: Defining areas that promote species persistence and ecosystem resilience in the face of global climate change” (National Climate Change Adaptation Research Facility, 2013).
88
J. McDonald, M. C. Styles, Legal strategies for adaptive management under climate change. J. Environ. Law 26, 25–53 (2014). 10.1093/jel/equ003
89
A. J. Hobday, et al., Dynamic ocean management: Integrating scientific and technological capacity with law, policy and management. Stanford Environ. Law J. 33, 125–165 (2014).
90
H. C. J. Godfray, J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, C. Toulmin, Food security: The challenge of feeding 9 billion people. Science 327, 812–818 (2010). 10.1126/science.1185383
91
S. J. Hegland, A. Nielsen, A. Lázaro, A.-L. Bjerknes, Ø. Totland, How does climate warming affect plant-pollinator interactions? Ecol. Lett. 12, 184–195 (2009). 10.1111/j.1461-0248.2008.01269.x
92
D. P. Bebber, M. A. T. Ramotowski, S. J. Gurr, Crop pests and pathogens move polewards in a warming world. Nat. Clim. Chang. 3, 985–988 (2013). 10.1038/nclimate1990
93
W. N. Adger, J. Barnett, K. Brown, N. Marshall, K. O’Brien, Cultural dimensions of climate change impacts and adaptation. Nat. Clim. Chang. 3, 112–117 (2013). 10.1038/nclimate1666
94
H. O. Pörtner et al., “Ocean systems” in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014).
95
T. D. Clark, E. Sandblom, F. Jutfelt, Aerobic scope measurements of fishes in an era of climate change: Respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782 (2013). 10.1242/jeb.084251
96
J. N. Tedeschi, W. J. Kennington, J. L. Tomkins, O. Berry, S. Whiting, M. G. Meekan, N. J. Mitchell, Heritable variation in heat shock gene expression: A potential mechanism for adaptation to thermal stress in embryos of sea turtles. Proc. R. Soc. London Ser. B 283, 20152320 (2016). 10.1098/rspb.2015.2320
97
N. Pettorelli, W. F. Laurance, T. G. O’Brien, M. Wegmann, H. Nagendra, W. Turner, Satellite remote sensing for applied ecologists: Opportunities and challenges. J. Appl. Ecol. 51, 839–848 (2014). 10.1111/1365-2664.12261
98
S. Bojinski, M. Verstraete, T. C. Peterson, C. Richter, A. Simmons, M. Zemp, The Concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 95, 1431–1443 (2014). 10.1175/BAMS-D-13-00047.1
99
A. J. Constable, D. P. Costa, O. Schofield, L. Newman, E. R. Urban Jr., E. A. Fulton, J. Melbourne-Thomas, T. Ballerini, P. W. Boyd, A. Brandt, W. K. de la Mare, M. Edwards, M. Eléaume, L. Emmerson, K. Fennel, S. Fielding, H. Griffiths, J. Gutt, M. A. Hindell, E. E. Hofmann, S. Jennings, H. S. La, A. McCurdy, B. G. Mitchell, T. Moltmann, M. Muelbert, E. Murphy, A. J. Press, B. Raymond, K. Reid, C. Reiss, J. Rice, I. Salter, D. C. Smith, S. Song, C. Southwell, K. M. Swadling, A. Van de Putte, Z. Willis, Developing priority variables (“ecosystem Essential Ocean Variables” — eEOVs) for observing dynamics and change in Southern Ocean ecosystems. J. Mar. Syst. 161, 26–41 (2016). 10.1016/j.jmarsys.2016.05.003
100
N. Pettorelli, M. Wegmann, A. Skidmore, S. Mücher, T. P. Dawson, M. Fernandez, R. Lucas, M. E. Schaepman, T. Wang, B. O’Connor, R. H. G. Jongman, P. Kempeneers, R. Sonnenschein, A. K. Leidner, M. Böhm, K. S. He, H. Nagendra, G. Dubois, T. Fatoyinbo, M. C. Hansen, M. Paganini, H. M. de Klerk, G. P. Asner, J. T. Kerr, A. B. Estes, D. S. Schmeller, U. Heiden, D. Rocchini, H. M. Pereira, E. Turak, N. Fernandez, A. Lausch, M. A. Cho, D. Alcaraz-Segura, M. A. McGeoch, W. Turner, A. Mueller, V. St-Louis, J. Penner, P. Vihervaara, A. Belward, B. Reyers, G. N. Geller, Framing the concept of satellite remote sensing essential biodiversity variables: Challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016). 10.1002/rse2.15
101
IPBES, “Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services” (Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2016); www.ipbes.net/resources/publications/13.
102
M. Harfoot, D. P. Tittensor, T. Newbold, G. McInerny, M. J. Smith, J. P. W. Scharlemann, Integrated assessment models for ecologists: The present and the future. Global. Ecol. Biogeogr. 23, 124–143 (2014). 10.1111/geb.12100
103
D. P. van Vuuren, M. Kok, P. L. Lucas, A. G. Prins, R. Alkemade, M. van den Berg, L. Bouwman, S. van der Esch, M. Jeuken, T. Kram, E. Stehfest, Pathways to achieve a set of ambitious global sustainability objectives by 2050: Explorations using the IMAGE integrated assessment model. Technol. Forecast. Soc. Change 98, 303–323 (2015). 10.1016/j.techfore.2015.03.005
104
P. Lehodey, I. Senina, R. Murtugudde, A spatial ecosystem and populations dynamics model (SEAPODYM) – Modeling of tuna and tuna-like populations. Prog. Oceanogr. 78, 304–318 (2008). 10.1016/j.pocean.2008.06.004
105
R. Bonney, J. L. Shirk, T. B. Phillips, A. Wiggins, H. L. Ballard, A. J. Miller-Rushing, J. K. Parrish, Next steps for citizen science. Science 343, 1436–1437 (2014). 10.1126/science.1251554
106
F. Danielsen, P. M. Jensen, N. D. Burgess, R. Altamirano, P. A. Alviola, H. Andrianandrasana, J. S. Brashares, A. C. Burton, I. Coronado, N. Corpuz, M. Enghoff, J. Fjeldsa, M. Funder, S. Holt, H. Hubertz, A. E. Jensen, R. Lewis, J. Massao, M. M. Mendoza, Y. Ngaga, C. B. Pipper, M. K. Poulsen, R. M. Rueda, M. K. Sam, T. Skielboe, M. Sorensen, R. Young, A multicountry assessment of tropical resource monitoring by local communities. Bioscience 64, 236–251 (2014). 10.1093/biosci/biu001
107
B. Forbes, “Arctic vegetation cover: Patterns, processes and expected change” in The New Arctic, B. Evengård, J. N. Larsen, P. Öyvind, Eds. (Springer, 2015).
108
G. B. Hill, G. H. R. Henry, Responses of High Arctic wet sedge tundra to climate warming since 1980. Glob. Change Biol. 17, 276–287 (2011). 10.1111/j.1365-2486.2010.02244.x
109
D. Verbyla, The greening and browning of Alaska based on 1982-2003 satellite data. Global Ecol. Biogeogr. 17, 547–555 (2008). 10.1111/j.1466-8238.2008.00396.x
110
E. Post, M. C. Forchhammer, M. S. Bret-Harte, T. V. Callaghan, T. R. Christensen, B. Elberling, A. D. Fox, O. Gilg, D. S. Hik, T. T. Høye, R. A. Ims, E. Jeppesen, D. R. Klein, J. Madsen, A. D. McGuire, S. Rysgaard, D. E. Schindler, I. Stirling, M. P. Tamstorf, N. J. C. Tyler, R. van der Wal, J. Welker, P. A. Wookey, N. M. Schmidt, P. Aastrup, Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009). 10.1126/science.1173113
111
IPCC, “Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change” (Cambridge Univ. Press, 2014).
112
P. Martens, R. Kovats, S. Nijhof, P. Devries, M. Livermore, D. Bradley, J. Cox, A. McMichael, Climate change and future populations at risk of malaria. Global Environ. Change 9, S89–S107 (1999). 10.1016/S0959-3780(99)00020-5
113
K. D. Lafferty, The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009). 10.1890/08-0079.1
114
S. J. Ryan, A. McNally, L. R. Johnson, E. A. Mordecai, T. Ben-Horin, K. Paaijmans, K. D. Lafferty, Mapping physiological suitability limits for malaria in Africa under climate change. Vector Borne Zoonotic Dis. 15, 718–725 (2015). 10.1089/vbz.2015.1822
115
S. I. Hay, J. Cox, D. J. Rogers, S. E. Randolph, D. I. Stern, G. D. Shanks, M. F. Myers, R. W. Snow, Climate change and the resurgence of malaria in the East African highlands. Nature 415, 905–909 (2002). 10.1038/415905a
116
C. Caminade, S. Kovats, J. Rocklov, A. M. Tompkins, A. P. Morse, F. J. Colón-González, H. Stenlund, P. Martens, S. J. Lloyd, Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. U.S.A. 111, 3286–3291 (2014). 10.1073/pnas.1302089111
117
WHO, “World health report: Executive summary” (WHO, 1996); www.who.int/whr/1996/media_centre/executive_summary1/en/index9.html.
118
K. D. Tape, D. D. Gustine, R. W. Ruess, L. G. Adams, J. A. Clark, Range expansion of moose in Arctic Alaska linked to warming and increased shrub habitat. PLOS ONE 11, e0152636 (2016). 10.1371/journal.pone.0152636
119
J. T. Kerr, A. Pindar, P. Galpern, L. Packer, S. G. Potts, S. M. Roberts, P. Rasmont, O. Schweiger, S. R. Colla, L. L. Richardson, D. L. Wagner, L. F. Gall, D. S. Sikes, A. Pantoja, Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015). 10.1126/science.aaa7031
120
N. Morueta-Holme, K. Engemann, P. Sandoval-Acuña, J. D. Jonas, R. M. Segnitz, J.-C. Svenning, Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl. Acad. Sci. U.S.A. 112, 12741–12745 (2015). 10.1073/pnas.1509938112
121
R. D. Loyola, P. Lemes, F. V. Faleiro, J. Trindade-Filho, R. B. Machado, Severe loss of suitable climatic conditions for marsupial species in Brazil: Challenges and opportunities for conservation. PLOS ONE 7, e46257 (2012). 10.1371/journal.pone.0046257
122
S. A. Robinson, J. Wasley, A. K. Tobin, Living on the edge – plants and global change in continental and maritime Antarctica. Glob. Change Biol. 9, 1681–1717 (2003). 10.1046/j.1365-2486.2003.00693.x
123
C. Baker-Austin, J. A. Trinanes, N. G. H. Taylor, R. Hartnell, A. Siitonen, J. Martinez-Urtaza, Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Chang. 3, 73–77 (2013). 10.1038/nclimate1628
124
L. Comte, G. Grenouillet, Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36, 1236–1246 (2013). 10.1111/j.1600-0587.2013.00282.x
125
C. Toulmin, K. Brock, “Desertification in the Sahel: Local pratice meets global narrative” in The End of Desertification? R. Behnke, M. Mortimore, Eds. (Springer, 2016), pp. 37–63.
126
W. M. Potts, R. Henriques, C. V. Santos, K. Munnik, I. Ansorge, F. Dufois, A. J. Booth, C. Kirchner, W. H. H. Sauer, P. W. Shaw, Ocean warming, a rapid distributional shift, and the hybridization of a coastal fish species. Global Change Biol. 20, 2765–2777 (2014). 10.1111/gcb.12612
127
C. J. Raxworthy, R. G. Pearson, N. Rabibisoa, A. M. Rakotondrazafy, J.-B. Ramanamanjato, A. P. Raselimanana, S. Wu, R. A. Nussbaum, D. A. Stone, Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14, 1703–1720 (2008). 10.1111/j.1365-2486.2008.01596.x
128
P. Lloyd, É. E. Plagányi, S. J. Weeks, M. Magno-Canto, G. Plagányi, Ocean warming alters species abundance patterns and increases species diversity in an African sub-tropical reef-fish community. Fish. Oceanogr. 21, 78–94 (2012). 10.1111/j.1365-2419.2011.00610.x
129
Y. Serisawa, Z. Imoto, T. Ishikawa, M. Ohno, Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fish. Sci. 70, 189–191 (2004). 10.1111/j.0919-9268.2004.00788.x
130
H. Yamano, K. Sugihara, K. Nomura, Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys. Res. Lett. 38, L04601 (2011). 10.1029/2010GL046474
131
E. Vivekanandan, M. Rajagopalan, N. G. K. Pillai, “Recent trends in sea surface temperature and its impact on oil sardine” in Global Climate Change and Indian Agriculture (Indian Council of Agricultural Research, 2009), chap. 20, pp. 89–92.
132
S. E. Williams et al., “Species resilience: the key to understanding biodiversity in the rainforests of the Australian Wet Tropics” (Report to the National Environmental Research Program, Reef and Rainforest Research Centre Limited, 2014).
133
R. H. Taylor, P. R. Wilson, Recent increase and southern expansion of Adelie penguin populations in the Ross Sea, Antarctica, related to climatic warming. N. Z. J. Ecol. 14, 25–29 (1990).
135
M. Schultz, T. D. Tyrrell, T. Ebenhard, “The 2030 Agenda and Ecosystems - A discussion paper on the links between the Aichi Biodiversity Targets and the Sustainable Development Goals” (SwedBio at Stockholm Resilience Centre, 2016).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 355 | Issue 6332
31 March 2017

Submission history

Published in print: 31 March 2017

Permissions

Request permissions for this article.

Acknowledgments

We thank the attendees of the international Species on the Move conference held in Hobart, Tasmania, Australia, in February 2016. G.T.P., E.W., and T.W. were supported by ARC Future Fellowships (FT140100596, FT110100597, and FT110100174, respectively). R.A.G.’s participation was made possible by the South African National Research Foundation (KIC 98457 and Blue Skies 449888). M.A.J. was funded by Yale Climate and Energy Institute. T.M.’s participation was supported by the WAPEAT (Finnish Academy 263465) Project. J.M.P. was funded by the ARC Centre of Excellence for Coral Reef Studies and ARC DP130100250, J.M.St. was supported by ARC DP150101491, and S.A.R. was funded by ARC DP110101714. B.E. was supported by Nordforsk. A. Cooper [Institute for Marine and Antarctic Studies (IMAS)] assisted with the figures. The workshop and conference leading to this paper were supported by the University of Tasmania, IMAS, NOAA Fisheries Service, CSIRO, National Climate Change Adaptation Research Facility Natural Ecosystems Network, the Ian Potter Foundation, the Antarctic Climate and Ecosystems Cooperative Research Centre, and the ARC Centre of Excellence for Environmental Decisions.

Authors

Affiliations

Institute for Marine and Antarctic Studies, Hobart, Tasmania 7001, Australia.
Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia.
Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.
Centro de Investigação em Biodiversidade e Recursos Geneticos, Universidade de Évora, 7000-890 Évora, Portugal.
Department of Biology, Center for Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen O, Denmark.
Johann D. Bell
Australian National Centre for Ocean Resources and Security, University of Wollongong, New South Wales 2522, Australia.
Betty and Gordon Moore Center for Science and Oceans, Conservation International, Arlington, VA 22202, USA.
Institute for Marine and Antarctic Studies, Hobart, Tasmania 7001, Australia.
Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia.
Timothy C. Bonebrake
School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan, Republic of China.
Institute for Marine and Antarctic Studies, Hobart, Tasmania 7001, Australia.
Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture and Food, Hobart, Tasmania 7000, Australia.
Department of Biology, Center for Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen O, Denmark.
Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
University of Colorado Museum of Natural History, Boulder, CO 80309, USA.
Departmento de Ecologia, Universidade Federal de Goiás, CP 131, 74.001-970 Goiânia, Goiás, Brazil.
Finn Danielsen
NORDECO, Copenhagen DK-1159, Denmark.
Division of Infectious Diseases, Department of Clinical Microbiology, Umea University, 90187 Umea, Sweden.
College of Marine and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia.
CSIRO Land and Water, Canberra, Australian Capital Territory 2601, Australia.
Institute for Marine and Antarctic Studies, Hobart, Tasmania 7001, Australia.
Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia.
Centre for Statistics in Ecology, the Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
Centre for Invasion Biology, Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Matieland 7602, South Africa.
Roger B. Griffis
National Oceanic and Atmospheric Administration (NOAA) Fisheries Service, Silver Spring, MD 20912, USA.
Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia.
CSIRO Oceans and Atmosphere, Hobart, Tasmania 7000, Australia.
Charlene Janion-Scheepers https://orcid.org/0000-0001-5942-7912
Monash University, School of Biological Sciences, Clayton, Victoria 3800, Australia.
Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA.
Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia.
Tasmanian School of Business and Economics, University of Tasmania, Hobart, Tasmania 7001, Australia.
EDYSAN (FRE 3498 CNRS-UPJV), Université de Picardie Jules Verne, 80037 Amiens Cedex 1, France.
Institute of Food and Resource Economics, Faculty of Science, University of Copenhagen, Rolighedsvej 25, DK-1958 Frederiksberg C, Denmark.
School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia.
Phillipa C. McCormack
Faculty of Law, University of Tasmania, Hobart, Tasmania 7001, Australia.
Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia.
Faculty of Law, University of Tasmania, Hobart, Tasmania 7001, Australia.
School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.
Snowchange Cooperative, University of Eastern Finland, Joensuu, FIN 80100 Finland.
School of Biological Sciences, Autralian Research Council (ARC) Centre of Excellence for Coral Reef Studies, The University of Queensland, Brisbane, Queensland 4072, Australia.
Institute of Zoology, Zoological Society of London, Regent’s Park, NW1 4RY London, UK.
National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK.
Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia.
Department of Wildlife Ecology and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
Justine D. Shaw
Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia.
Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, 4811 Queensland, Australia.
Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia.
Jennifer M. Sunday
Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan, Republic of China.
Centre for Marine Bio-Innovation and Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
Institute for Marine and Antarctic Studies, Hobart, Tasmania 7001, Australia.
Centre for Marine Socioecology, Hobart, Tasmania 7001, Australia.
School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.
Oceans Institute, The University of Western Australia, Perth, Western Australia 6009, Australia.
School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.
Stephen E. Williams
College of Marine and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia.

Funding Information

Notes

*
Corresponding author. Email: [email protected]
All authors after the first author are listed alphabetically

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Glacial ice supports a distinct and undocumented polar bear subpopulation persisting in late 21st-century sea-ice conditions, Science, 376, 6599, (1333-1338), (2022)./doi/10.1126/science.abk2793
    Abstract
  2. Getting ahead of climate change for ecological adaptation and resilience, Science, 376, 6600, (1421-1426), (2022)./doi/10.1126/science.abo3608
    Abstract
  3. The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia, Science Advances, 7, 18, (2021)./doi/10.1126/sciadv.abg0625
    Abstract
  4. Allow “nonuse rights” to conserve natural resources, Science, 373, 6558, (958-961), (2021)./doi/10.1126/science.abi4573
    Abstract
  5. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework, Science Advances, 7, 12, (2021)./doi/10.1126/sciadv.abc8259
    Abstract
  6. Socioeconomic impacts of marine heatwaves: Global issues and opportunities, Science, 374, 6566, (2021)./doi/10.1126/science.abj3593
    Abstract
  7. Using paleo-archives to safeguard biodiversity under climate change, Science, 369, 6507, (2021)./doi/10.1126/science.abc5654
    Abstract
  8. Keystone predators govern the pathway and pace of climate impacts in a subarctic marine ecosystem, Science, 369, 6509, (1351-1354), (2021)./doi/10.1126/science.aav7515
    Abstract
  9. Fire and biodiversity in the Anthropocene, Science, 370, 6519, (2021)./doi/10.1126/science.abb0355
    Abstract
  10. Microclimate shifts in a dynamic world, Science, 368, 6492, (711-712), (2021)./doi/10.1126/science.abc1245
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media