Acetylene's scission visualized by selfie

Can molecules take pictures of themselves? That is more or less the principle underlying laser-induced electron diffraction (LIED): A laser field strips an electron from a molecule and then sends it back to report on the structure of the remaining ion. Wolter et al. applied this technique to acetylene to track the cleavage of its C–H bond after double ionization (see the Perspective by Ruan). They imaged the full structure of the molecule and also distinguished more rapid dissociative dynamics when it was oriented parallel rather than perpendicular to the LIED field.
Science, this issue p. 308; see also p. 283


Visualizing chemical reactions as they occur requires atomic spatial and femtosecond temporal resolution. Here, we report imaging of the molecular structure of acetylene (C2H2) 9 femtoseconds after ionization. Using mid-infrared laser–induced electron diffraction (LIED), we obtained snapshots as a proton departs the [C2H2]2+ ion. By introducing an additional laser field, we also demonstrate control over the ultrafast dissociation process and resolve different bond dynamics for molecules oriented parallel versus perpendicular to the LIED field. These measurements are in excellent agreement with a quantum chemical description of field-dressed molecular dynamics.

Get full access to this article

View all available purchase options and get full access to this article.

Already a subscriber or AAAS Member? Log In

Supplementary Material


Supplementary Text
Figs. S1 to S5
References (3962)


File (wolter-sm.pdf)

References and Notes

Woolley R. G., Quantum chemistry beyond the Born-Oppenheimer approximation. J. Mol. Struct. THEOCHEM 230, 17–46 (1991).
Zewail A. H., Femtochemistry: Atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Prize lecture). J. Phys. Chem. A 104, 5660–5694 (2000).
Xu H., Okino T., Yamanouchi K., Tracing ultrafast hydrogen migration in allene in intense laser fields by triple-ion coincidence momentum imaging. J. Chem. Phys. 131, 151102 (2009).
Polanyi J. C., Zewail A. H., Direct observation of the transition state. Acc. Chem. Res. 28, 119–132 (1995).
Chergui M., Zewail A. H., Electron and x-ray methods of ultrafast structural dynamics: Advances and applications. ChemPhysChem 10, 28–43 (2009).
Minitti M. P., Budarz J. M., Kirrander A., Robinson J. S., Ratner D., Lane T. J., Zhu D., Glownia J. M., Kozina M., Lemke H. T., Sikorski M., Feng Y., Nelson S., Saita K., Stankus B., Northey T., Hastings J. B., Weber P. M., Imaging molecular motion: Femtosecond x-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015).
Ayyer K., Yefanov O. M., Oberthür D., Roy-Chowdhury S., Galli L., Mariani V., Basu S., Coe J., Conrad C. E., Fromme R., Schaffer A., Dörner K., James D., Kupitz C., Metz M., Nelson G., Xavier P. L., Beyerlein K. R., Schmidt M., Sarrou I., Spence J. C., Weierstall U., White T. A., Yang J. H., Zhao Y., Liang M., Aquila A., Hunter M. S., Robinson J. S., Koglin J. E., Boutet S., Fromme P., Barty A., Chapman H. N., Macromolecular diffractive imaging using imperfect crystals. Nature 530, 202–206 (2016).
A. A. Ischenko, S. A. Aseyev, Eds., Time-resolved electron diffraction: For chemistry, biology and materials science, in Advances in Imaging and Electron Physics (Elsevier, 2014), vol. 184;
Zhang P., Yang J., Centurion M., Tilted femtosecond pulses for velocity matching in gas-phase ultrafast electron diffraction. New J. Phys. 16, 083008 (2014).
Gerbig C., Senftleben A., Morgenstern S., Sarpe C., Baumert T., Spatio-temporal resolution studies on a highly compact ultrafast electron diffractometer. New J. Phys. 17, 043050 (2015).
Manz S., Casandruc A., Zhang D., Zhong Y., Loch R. A., Marx A., Hasegawa T., Liu L. C., Bayesteh S., Delsim-Hashemi H., Hoffmann M., Felber M., Hachmann M., Mayet F., Hirscht J., Keskin S., Hada M., Epp S. W., Flöttmann K., Miller R. J., Mapping atomic motions with ultrabright electrons: Towards fundamental limits in space-time resolution. Faraday Discuss. 177, 467–491 (2015).
Gliserin A., Walbran M., Krausz F., Baum P., Sub-phonon-period compression of electron pulses for atomic diffraction. Nat. Commun. 6, 8723 (2015).
Zuo T., Bandrauk A. D., Corkum P. B., Laser-induced electron diffraction: A new tool for probing ultrafast molecular dynamics. Chem. Phys. Lett. 259, 313–320 (1996).
Lein M., Marangos J. P., Knight P. L., Electron diffraction in above-threshold ionization of molecules. Phys. Rev. A 66, 051404 (2002).
Meckel M., Comtois D., Zeidler D., Staudte A., Pavicic D., Bandulet H. C., Pépin H., Kieffer J. C., Dörner R., Villeneuve D. M., Corkum P. B., Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).
Lin C. D., Le A.-T., Chen Z., Morishita T., Lucchese R., Strong-field rescattering physics—self-imaging of a molecule by its own electrons. J. Phys. At. Mol. Opt. Phys. 43, 122001 (2010).
Blaga C. I., Xu J., DiChiara A. D., Sistrunk E., Zhang K., Agostini P., Miller T. A., DiMauro L. F., Lin C. D., Imaging ultrafast molecular dynamics with laser-induced electron diffraction. Nature 483, 194–197 (2012).
Corkum P. B., Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).
Baker S., Robinson J. S., Haworth C. A., Teng H., Smith R. A., Chirila C. C., Lein M., Tisch J. W., Marangos J. P., Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).
Pullen M. G., Wolter B., Le A. T., Baudisch M., Hemmer M., Senftleben A., Schröter C. D., Ullrich J., Moshammer R., Lin C. D., Biegert J., Imaging an aligned polyatomic molecule with laser-induced electron diffraction. Nat. Commun. 6, 7262 (2015).
Wolter B., et al., Strong-field physics with mid-IR fields. Phys. Rev. X 5, 021034 (2015).
Pullen M. G., Wolter B., Le A. T., Baudisch M., Sclafani M., Pires H., Schröter C. D., Ullrich J., Moshammer R., Pfeifer T., Lin C. D., Biegert J., Influence of orbital symmetry on diffraction imaging with rescattering electron wave packets. Nat. Commun. 7, 11922 (2016).
Kraus P. M., Mignolet B., Baykusheva D., Rupenyan A., Horný L., Penka E. F., Grassi G., Tolstikhin O. I., Schneider J., Jensen F., Madsen L. B., Bandrauk A. D., Remacle F., Wörner H. J., Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 350, 790–795 (2015).
Xie X., Doblhoff-Dier K., Roither S., Schöffler M. S., Kartashov D., Xu H., Rathje T., Paulus G. G., Baltuška A., Gräfe S., Kitzler M., Attosecond-recollision-controlled selective fragmentation of polyatomic molecules. Phys. Rev. Lett. 109, 243001 (2012).
Alnaser A. S., Kübel M., Siemering R., Bergues B., Kling N. G., Betsch K. J., Deng Y., Schmidt J., Alahmed Z. A., Azzeer A. M., Ullrich J., Ben-Itzhak I., Moshammer R., Kleineberg U., Krausz F., de Vivie-Riedle R., Kling M. F., Subfemtosecond steering of hydrocarbon deprotonation through superposition of vibrational modes. Nat. Commun. 5, 3800 (2014).
Gaire B., Lee S. Y., Haxton D. J., Pelz P. M., Bocharova I., Sturm F. P., Gehrken N., Honig M., Pitzer M., Metz D., Kim H.-K., Schöffler M., Dörner R., Gassert H., Zeller S., Voigtsberger J., Cao W., Zohrabi M., Williams J., Gatton A., Reedy D., Nook C., Müller T., Landers A. L., Cocke C. L., Ben-Itzhak I., Jahnke T., Belkacem A., Weber T., Photo-double-ionization of ethylene and acetylene near threshold. Phys. Rev. A 89, 013403 (2014).
Ibrahim H., Wales B., Beaulieu S., Schmidt B. E., Thiré N., Fowe E. P., Bisson É., Hebeisen C. T., Wanie V., Giguére M., Kieffer J. C., Spanner M., Bandrauk A. D., Sanderson J., Schuurman M. S., Légaré F., Tabletop imaging of structural evolutions in chemical reactions demonstrated for the acetylene cation. Nat. Commun. 5, 4422 (2014).
Worth G. A., Cederbaum L. S., Beyond Born-Oppenheimer: Molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55, 127–158 (2004).
Bowman J. M., Beyond Born-Oppenheimer. Science 319, 40–41 (2008).
Ohrendorf E. M.-L., Tarantelli F., Cederbaum L. S., Dicationic states of hydrocarbons and a statistical approach to their Auger spectra. J. Chem. Phys. 92, 2984 (1990).
Thissen R., Delwiche J., Robbe J. M., Duflot D., Flament J. P., Eland J. H. D., Dissociations of the ethyne dication C2H2+2. J. Chem. Phys. 99, 6590 (1993).
Biegert J., Bates P. K., Chalus O., New mid-infrared light sources. IEEE J. Sel. Top. Quantum Electron. 18, 531–540 (2012).
Baudisch M., Pires H., Ishizuki H., Taira T., Hemmer M., Biegert J., Sub-4-optical-cycle, 340 MW peak power, high stability mid-IR source at 160 kHz. J. Opt. 17, 094002 (2015).
Doblhoff-Dier K., Kitzler M., Gräfe S., Theoretical investigation of alignment-dependent intense-field fragmentation of acetylene. Phys. Rev. A 94, 013405 (2016).
Alagia M., Callegari C., Candori P., Falcinelli S., Pirani F., Richter R., Stranges S., Vecchiocattivi F., Angular and energy distribution of fragment ions in dissociative double photoionization of acetylene molecules at 39 eV. J. Chem. Phys. 136, 204302 (2012).
Xie X., Doblhoff-Dier K., Xu H., Roither S., Schöffler M. S., Kartashov D., Erattupuzha S., Rathje T., Paulus G. G., Yamanouchi K., Baltuška A., Gräfe S., Kitzler M., Selective control over fragmentation reactions in polyatomic molecules using impulsive laser alignment. Phys. Rev. Lett. 112, 163003 (2014).
Krause J. L., Schafer K. J., Kulander K. C., High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992).
W. M. Haynes, Ed., CRC Handbook of Chemistry and Physics, (CRC Press, ed. 94, 2013);
Shafir D., Soifer H., Bruner B. D., Dagan M., Mairesse Y., Patchkovskii S., Ivanov M. Y., Smirnova O., Dudovich N., Resolving the time when an electron exits a tunnelling barrier. Nature 485, 343–346 (2012).
Hankin S. M., Villeneuve D. M., Corkum P. B., Rayner D. M., Intense-field laser ionization rates in atoms and molecules. Phys. Rev. A 64, 013405 (2001).
Walker B., Sheehy B., DiMauro L. F., Agostini P., Schafer K. J., Kulander K. C., Precision measurement of strong field double ionization of helium. Phys. Rev. Lett. 73, 1227–1230 (1994).
McFarland B. K., Farrell J. P., Bucksbaum P. H., Gühr M., High harmonic generation from multiple orbitals in N2. Science 322, 1232–1235 (2008).
Ortigoso J., Rodríguez M., Gupta M., Friedrich B., Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field. J. Chem. Phys. 110, 3870 (1999).
Head-Gordon M., Pople J. A., Frisch M. J., MP2 energy evaluation by direct methods. Chem. Phys. Lett. 153, 503–506 (1988).
Krishnan R., Binkley J. S., Seeger R., Pople J. A., Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650 (1980).
M. Frisch et al., Gaussian 09, Revision B.01. (Gaussian, 2009).
Finley J. P., Similarities between single reference perturbation theory based on a CASSCF wavefunction and multireference perturbation theory based on a reference space spanned by a CAS. Chem. Phys. Lett. 283, 277–282 (1998).
K. P. Lawley, B. O. Roos, Advances in Chemical Physics (John Wiley & Sons, 1987), vol. 69;
Aquilante F., De Vico L., Ferré N., Ghigo G., Malmqvist P. A., Neogrády P., Pedersen T. B., Pitonák M., Reiher M., Roos B. O., Serrano-Andrés L., Urban M., Veryazov V., Lindh R., MOLCAS 7: The next generation. J. Comput. Chem. 31, 224–247 (2010).
Veryazov V., Widmark P.-O., Serrano-Andrés L., Lindh R., Roos B. O., 2MOLCAS as a development platform for quantum chemistry software. Int. J. Quantum Chem. 100, 626–635 (2004).
Karlström G., Lindh R., Malmqvist P.-Å., Roos B. O., Ryde U., Veryazov V., Widmark P.-O., Cossi M., Schimmelpfennig B., Neogrady P., Seijo L., MOLCAS: A program package for computational chemistry. Comput. Mater. Sci. 28, 222–239 (2003).
Aquilante F., Malmqvist P.-Å., Pedersen T. B., Ghosh A., Roos B. O., Cholesky decomposition-based multiconfiguration second-order perturbation theory (CD-CASPT2): Application to the spin-state energetics of Co(III)(diiminato)(NPh). J. Chem. Theory Comput. 4, 694–702 (2008).
Feit M., Fleck J., Steiger A., Solution of the Schrödinger equation by a spectral method. J. Comput. Phys. 47, 412–433 (1982).
Dunning T. H., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007 (1989).
Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S., Windus T. L., Dupuis M., Montgomery J. A., General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993).
Kivimäki A., Neeb M., Kempgens B., Köppe H. M., Maier K., Bradshaw A. M., Angle-resolved Auger spectra of the molecule. J. Phys. At. Mol. Opt. Phys. 30, 4279–4291 (1997).
Tully J. C., Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061 (1990).
I. Hargittai, M. Hargittai, Stereochemical Applications of Gas-phase Electron Diffraction: Structural Information for Selected Classes of Compounds (VCH, 1988);
Chen Z., Le A.-T., Morishita T., Lin C. D., Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra. Phys. Rev. A 79, 033409 (2009).
Morishita T., Okunishi M., Shimada K., Prümper G., Chen Z., Watanabe S., Ueda K., Lin C. D., Retrieval of experimental differential electron–ion elastic scattering cross sections from high-energy ATI spectra of rare gas atoms by infrared lasers. J. Phys. At. Mol. Opt. Phys. 42, 105205 (2009).
Le A.-T., Lucchese R. R., Tonzani S., Morishita T., Lin C. D., Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).
Xu J., Chen Z., Le A.-T., Lin C. D., Self-imaging of molecules from diffraction spectra by laser-induced rescattering electrons. Phys. Rev. A 82, 033403 (2010).

Information & Authors


Published In

Volume 354 | Issue 6310
21 October 2016

Submission history

Received: 13 June 2016
Accepted: 19 September 2016
Published in print: 21 October 2016


Request permissions for this article.


We acknowledge financial support from the Spanish Ministry of Economy and Competitiveness (MINECO), through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0522), grants FIS2014-56774-R and FIS2014-51478-ERC; the Catalan Institució Catalana de Recerca I Estudis Avançats; Agencia de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) with grant SGR 2014-2016; the Fundació Cellex Barcelona; the European Union’s Horizon 2020 research and innovation program under LASERLAB-EUROPE (EU-H2020 654148); COST Actions MP1203, XUV/X-ray light and fast ions for ultrafast chemistry (XLIC); the Marie Sklodowska-Curie grant agreement 641272; and the European Research Council through ERC-2013 Advanced Grant 338580. B.W. was supported by AGAUR (FI-DGR 2013–2015). M.G.P. was supported by the ICFONEST+ program, partially funded by the Marie Curie cofunding of Regional, National and International Programs—COFUND (FP7-PEOPLE-2013-COFUND) action of the European Commission. A.-T.L. and C.D.L. are supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under grant DE-FG02-86ER13491. We thank D. Zalvidea, M. Sclafani, and A. Stolow for helpful and inspiring discussions.



B. Wolter*
ICFO–Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
M. G. Pullen*
ICFO–Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
A.-T. Le
J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506-2604, USA.
M. Baudisch
ICFO–Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
K. Doblhoff-Dier
Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, Netherlands.
A. Senftleben
Universität Kassel, Institut für Physik und CINSaT, Heinrich-Plett-Str. 40, 34132 Kassel, Germany.
M. Hemmer
ICFO–Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Centre for Ultrafast Imaging (CUI), 22607 Hamburg, Germany.
C. D. Schröter
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
J. Ullrich
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany.
T. Pfeifer
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
R. Moshammer
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany.
S. Gräfe
Institute for Physical Chemistry, Friedrich-Schiller University Jena, 07743 Jena, Germany.
Abbe Center of Photonics, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
O. Vendrell
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Centre for Ultrafast Imaging (CUI), 22607 Hamburg, Germany.
Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
C. D. Lin
J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506-2604, USA.
ICFO–Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.


These authors contributed equally to this work.
Corresponding author. Email: [email protected]

Metrics & Citations


Article Usage


Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Ultrafast Dynamics of Electronic Resonances in Molecules Adsorbed on Metal Surfaces: A Wave Packet Propagation Approach, Journal of Chemical Theory and Computation, 17, 2, (639-654), (2021).
  2. Dispersion-managed technique in temporal-frequency measurement for MoTe 2 -based ultrafast laser , Applied Optics, 60, 5, (1110), (2021).
  3. Molecular structure retrieval directly from laboratory-frame photoelectron spectra in laser-induced electron diffraction, Nature Communications, 12, 1, (2021).
  4. Concluding remarks: The age of molecular movies, Faraday Discussions, 228, (622-629), (2021).
  5. Investigation of dissociative photoionization pathways for orientation-selected molecules by phase-controlled laser fields, AIP Advances, 11, 1, (015246), (2021).
  6. Orientation and Alignment dynamics of polar molecule driven by shaped laser pulses, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 256, (119663), (2021).
  7. Observation of the quantum shift of a backward rescattering caustic by carrier-envelope phase mapping, Physical Review A, 103, 4, (2021).
  8. Optical Excitations with Electron Beams: Challenges and Opportunities, ACS Photonics, 8, 4, (945-974), (2021).
  9. Attosecond technology(ies) and science, Journal of Physics B: Atomic, Molecular and Optical Physics, 54, 7, (070201), (2021).
  10. Ionic-state-resolved electron–electron correlation in strong-field double ionization, Results in Physics, 29, (104647), (2021).
  11. See more

View Options

Check Access

Log in to view the full text


AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF







Share article link

Share on social media