Advertisement

Abstract

Macroautophagy is a dynamic process involving the rearrangement of subcellular membranes to sequester cytoplasm and organelles for delivery to the lysosome or vacuole where the sequestered cargo is degraded and recycled. This process takes place in all eukaryotic cells. It is highly regulated through the action of various kinases, phosphatases, and guanosine triphosphatases (GTPases). The core protein machinery that is necessary to drive formation and consumption of intermediates in the macroautophagy pathway includes a ubiquitin-like protein conjugation system and a protein complex that directs membrane docking and fusion at the lysosome or vacuole. Macroautophagy plays an important role in developmental processes, human disease, and cellular response to nutrient deprivation.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES AND NOTES

1
Mortimore G. E., Miotto G., Venerando R., Kadowaki M., Subcell. Biochem. 27, 93 (1996).
2
Vittorini S., et al., J. Gerontol. A Biol. Sci. Med. Sci. 54, B318 (1999).
3
Dunn W. A., Trends Cell Biol. 4, 139 (1994).
4
Cuervo A. M., Dice J. F., J. Mol. Med. 76, 6 (1998).
5
Kim J., Klionsky D. J., Annu. Rev. Biochem. 69, 303 (2000).
6
Klionsky D. J., Ohsumi Y., Annu. Rev. Cell. Dev. Biol. 15, 1 (1999).
7
Thumm M., et al., FEBS Lett. 349, 275 (1994).
8
Tsukada M., Ohsumi Y., FEBS Lett. 333, 169 (1993).
9
Harding T. M., Morano K. A., Scott S. V., Klionsky D. J., J. Cell Biol. 131, 591 (1995).
10
Harding T. M., Hefner-Gravink A., Thumm M., Klionsky D. J., J. Biol. Chem. 271, 17621 (1996).
11
Scott S. V., et al., Proc. Natl. Acad. Sci. U.S.A. 93, 12304 (1996).
12
Baba M., Osumi M., Scott S. V., Klionsky D. J., Ohsumi Y., J. Cell Biol. 139, 1687 (1997).
13
Scott S. V., Baba M., Ohsumi Y., Klionsky D. J., J. Cell Biol. 138, 37 (1997).
14
Blommaart E. F., Luiken J. J., Blommaart P. J., van Woerkom G. M., Meijer A. J., J. Biol. Chem. 270, 2320 (1995).
15
Thomas G., Hall M. N., Curr. Opin. Cell Biol. 9, 782 (1997).
16
Brown E. J., et al., Nature 377, 441 (1995).
17
Noda T., Ohsumi Y., J. Biol. Chem. 273, 3963 (1998).
18
Beck T., Hall M. N., Nature 402, 689 (1999).
19
Holen I., Gordon P. B., Seglen P. O., Biochem. J. 284, 633 (1992).
20
Kamada Y., et al., J. Cell Biol. 150, 1507 (2000).
21
Scott S., et al., J. Biol. Chem. 275, 25840 (2000).
22
Ogura K., et al., Genes Dev. 8, 2389 (1994).
23
Yan J., et al., Biochem. Biophys. Res. Commun. 246, 222 (1998).
24
Dunn W. A., J. Cell Biol. 110, 1923 (1990).
25
Strømhaug P. E., Berg T. O., Fengsrud M., Seglen P. O., Biochem. J. 335, 217 (1998).
26
Petiot A., Ogier-Denis E., Blommaart E. F., Meijer A. J., Codogno P., J. Biol. Chem. 275, 992 (2000).
27
Ogier-Denis E., Houri J.-J., Bauvy C., Codogno P., J. Biol. Chem. 271, 28593 (1996).
28
Codogno P., Ogier-Denis E., Houri J.-J., Cell. Signal. 9, 125 (1997).
29
Mizushima N., et al., Nature 395, 395 (1998).
30
Kim J., Dalton V. M., Eggerton K. P., Scott S. V., Klionsky D. J., Mol. Biol. Cell 10, 1337 (1999).
31
Tanida I., et al., Mol. Biol. Cell 10, 1367 (1999).
32
Shintani T., et al., EMBO J. 18, 5234 (1999).
33
Mizushima N., Noda T., Ohsumi Y., EMBO J. 18, 3888 (1999).
34
George M. D., et al., Mol. Biol. Cell 11, 969 (2000).
35
Mizushima N., Sugita H., Yoshimori T., Ohsumi Y., J. Biol. Chem. 273, 33889 (1998).
36
Huang W. P., Scott S. V., Kim J., Klionsky D. J., J. Biol. Chem. 275, 5845 (2000).
37
Kirisako T., et al., J. Cell Biol. 147, 435 (1999).
38
Darsow T., Rieder S. E., Emr S. D., J. Cell Biol. 138, 517 (1997).
39
Sato T. K., Darsow T., Emr S. D., Mol. Cell. Biol. 18, 5308 (1998).
40
Rieder S. E., Emr S. D., Mol. Biol. Cell 8, 2307 (1997).
41
Sato T. K., Rehling P., Peterson M. R., Emr S. D., Mol. Cell 6, 661 (2000).
42
Seals D. F., Eitzen G., Margolis N., Wickner W. T., Price A., Proc. Natl. Acad. Sci. U.S.A. 97, 9402 (2000).
43
Takeshige K., Baba M., Tsuboi S., Noda T., Ohsumi Y., J. Cell Biol. 119, 301 (1992).
44
Matsuura A., Tsukada M., Wada Y., Ohsumi Y., Gene 192, 245 (1997).
45
S. A. Teter, D. J. Klionsky, unpublished data.
46
Kim J., Scott S. V., Oda M., Klionsky D. J., J. Cell Biol. 137, 609 (1997).
47
Tuttle D. L., Dunn W. A., J. Cell Sci. 108, 25 (1995).
48
Yuan W., Stromhaug P. E., Dunn W. A., Mol. Biol. Cell 10, 1353 (1999).
49
Hutchins M. U., Veenhuis M., Klionsky D. J., J. Cell Sci. 112, 4079 (1999).
50
Crompton M., Biochem. J. 341, 233 (1999).
51
Lemasters J. J., et al., Biochim. Biophys. Acta 1366, 177 (1998).
52
Dawson G., Cho S., J. Neurosci. Res. 60, 133 (2000).
53
Schwartz L. M., Smith S. W., Jones M. E., Osborne B. A., Proc. Natl. Acad. Sci. U.S.A. 90, 980 (1993).
54
Dudek H., et al., Science 275, 661 (1997).
55
Xue L., Fletcher G. C., Tolkovsky A. M., Mol. Cell. Neurosci. 14, 180 (1999).
56
Isahara K., et al., Neuroscience 91, 233 (1999).
57
Lamborghini J. E., J. Comp. Neurol. 264, 47 (1987).
58
Anglade P., et al., Histol. Histopathol. 12, 25 (1997).
59
Nishino I., et al., Nature 406, 906 (2000).
60
Tanaka Y., et al., Nature 406, 902 (2000).
61
Schulte-Hermann R., et al., Toxicol. Pathol. 25, 89 (1997).
62
Liang X. H., et al., Nature 402, 672 (1999).
63
Bursch W., et al., J. Cell Sci. 113, 1189 (2000).
64
Jia L., et al., Br. J. Haematol. 98, 673 (1997).
65
Hammond E. M., et al., FEBS Lett. 425, 391 (1998).
66
Alessi D. R., Kozlowski M. T., Weng Q. P., Morrice N., Avruch J., Curr. Biol. 8, 69 (1998).
67
Pullen N., et al., Science 279, 707 (1998).
68
Vanhaesebroeck B., Alessi D. R., Biochem. J. 346, 561 (2000).
69
Coffer P. J., Jin J., Woodgett J. R., Biochem. J. 335, 1 (1998).
70
Hemmings B. A., Science 275, 628 (1997).
71
Kametaka S., Okano T., Ohsumi M., Ohsumi Y., J. Biol. Chem. 273, 22284 (1998).
72
Noda T., et al., J. Cell Biol. 148, 465 (2000).
73
Wang Y. X., Catlett N. L., Weisman L. S., J. Cell Biol. 140, 1063 (1998).
74
Kirisako T., et al., J. Cell Biol. 151, 263 (2000).
75
Sagiv Y., Legesse-Miller A., Porat A., Elazar Z., EMBO J. 19, 1494 (2000).
76
Lang T., et al., EMBO J. 17, 3597 (1998).
77
Kabeya Y., et al., EMBO J. 19, 5720 (2000).
78
Wada Y., Nakamura N., Ohsumi Y., Hirata A., J. Cell Sci. 110, 1299 (1997).
79
Mullock B. M., et al., Mol. Biol. Cell 11, 3137 (2000).
80
Haas A., Scheglmann D., Lazar T., Gallwitz D., Wickner W., EMBO J. 14, 5258 (1995).
81
Graham L. A., Powell B., Stevens T. H., J. Exp. Biol. 203, 61 (2000).
82
Nakamura N., Matsuura A., Wada Y., Ohsumi Y., J. Biochem. 121, 338 (1997).
83
The authors would like to thank J. Kim, T. Sato, A. Wurmser, and S. Scott for helpful comments. D.J.K. is supported by Public Health Service grant GM53396 from NIH and S.D.E. is supported by NIH grant CA58689 and is an Investigator with the Howard Hughes Medical Institute.

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 290 | Issue 5497
1 December 2000

Submission history

Published in print: 1 December 2000

Permissions

Request permissions for this article.

Authors

Affiliations

Daniel J. Klionsky*
Department of Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109–1048, USA.
Scott D. Emr
Division of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, and Howard Hughes Medical Institute, La Jolla, CA 92093–0668, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Structural and biochemical advances on the recruitment of the autophagy-initiating ULK and TBK1 complexes by autophagy receptor NDP52, Science Advances, 7, 33, (2021)./doi/10.1126/sciadv.abi6582
    Abstract
  2. Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease, Science Translational Medicine, 8, 368, (368ra174-368ra174), (2021)./doi/10.1126/scitranslmed.aag2210
    Abstract
  3. Endogenous MHC Class II Processing of a Viral Nuclear Antigen After Autophagy, Science, 307, 5709, (593-596), (2021)./doi/10.1126/science.1104904
    Abstract
  4. Regulation of an ATG7-beclin 1 Program of Autophagic Cell Death by Caspase-8, Science, 304, 5676, (1500-1502), (2021)./doi/10.1126/science.1096645
    Abstract
  5. Clockophagy is a novel selective autophagy process favoring ferroptosis, Science Advances, 5, 7, (2019)./doi/10.1126/sciadv.aaw2238
    Abstract
  6. Autophagy Genes Are Essential for Dauer Development and Life-Span Extension in C. elegans, Science, 301, 5638, (1387-1391), (2003)./doi/10.1126/science.1087782
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media