Advertisement

Hills and valleys of influenza infection

Each one of us may encounter several different strains of the ever-changing influenza virus during a lifetime. Scientists can now summarize such histories of infection over a lifetime of exposure. Fonville et al. visualize the interplay between protective responses and the evasive influenza virus by a technique called antibody landscape modeling (see the Perspective by Lessler). Landscapes reveal how exposure to new strains of the virus boost immune responses and indicate possibilities for optimizing future vaccination programs.
Science, this issue p. 996; see also p. 919

Abstract

We introduce the antibody landscape, a method for the quantitative analysis of antibody-mediated immunity to antigenically variable pathogens, achieved by accounting for antigenic variation among pathogen strains. We generated antibody landscapes to study immune profiles covering 43 years of influenza A/H3N2 virus evolution for 69 individuals monitored for infection over 6 years and for 225 individuals pre- and postvaccination. Upon infection and vaccination, titers increased broadly, including previously encountered viruses far beyond the extent of cross-reactivity observed after a primary infection. We explored implications for vaccination and found that the use of an antigenically advanced virus had the dual benefit of inducing antibodies against both advanced and previous antigenic clusters. These results indicate that preemptive vaccine updates may improve influenza vaccine efficacy in previously exposed individuals.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Supplementary Text
Figs. S1 to S49
Tables S1 to S14
References (2735)

Resources

File (fonville.sm.pdf)
File (revision1_1256427s2.xls)

References and Notes

1
Materials and methods are available as supplementary materials on Science Online.
2
Smith D. J., Lapedes A. S., de Jong J. C., Bestebroer T. M., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A., Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).
3
Hirst G. K., The quantitative determination of influenza virus and antibodies by means of red cell agglutination. J. Exp. Med. 75, 49–64 (1942).
4
Barr I. G., McCauley J., Cox N., Daniels R., Engelhardt O. G., Fukuda K., Grohmann G., Hay A., Kelso A., Klimov A., Odagiri T., Smith D., Russell C., Tashiro M., Webby R., Wood J., Ye Z., Zhang W.Writing Committee of the World Health Organization Consultation on Northern Hemisphere Influenza Vaccine Composition for 2009–2010, Epidemiological, antigenic and genetic characteristics of seasonal influenza A(H1N1), A(H3N2) and B influenza viruses: Basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009–2010 Northern Hemisphere season. Vaccine 28, 1156–1167 (2010).
5
Lessler J., Riley S., Read J. M., Wang S., Zhu H., Smith G. J., Guan Y., Jiang C. Q., Cummings D. A., Evidence for antigenic seniority in influenza A (H3N2) antibody responses in southern China. PLOS Pathog. 8, e1002802 (2012).
6
Horsfall F. L., Rickard E. R., Neutralizing antibodies in human serum after influenza A. The lack of strain specificity in the immunological response. J. Exp. Med. 74, 433–439 (1941).
7
Hennessy A. V., Davenport F. M., Francis T., Studies of antibodies to strains of influenza virus in persons of different ages in sera collected in a postepidemic period. J. Immunol. 75, 401–409 (1955).
8
Davenport F. M., Hennessy A. V., Francis T., Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J. Exp. Med. 98, 641–656 (1953).
9
Davenport F. M., Hennessy A. V., A serologic recapitulation of past experiences with influenza A; antibody response to monovalent vaccine. J. Exp. Med. 104, 85–97 (1956).
10
de St. Groth S. F., Webster R. G., Disquisitions on original antigenic sin; I. Evidence in man. J. Exp. Med. 124, 331–345 (1966).
11
Francis T., On the doctrine of original antigenic sin. Proc. Am. Philos. Soc. 104, 572–578 (1960).
12
Horby P., Mai Q., Fox A., Thai P. Q., Thi Thu Yen N., Thanh T., Le Khanh Hang N., Duong T. N., Thoang D. D., Farrar J., Wolbers M., Hien N. T., The epidemiology of interpandemic and pandemic influenza in Vietnam, 2007-2010: The Ha Nam household cohort study I. Am. J. Epidemiol. 175, 1062–1074 (2012).
13
Bodewes R., de Mutsert G., van der Klis F. R., Ventresca M., Wilks S., Smith D. J., Koopmans M., Fouchier R. A., Osterhaus A. D., Rimmelzwaan G. F., Prevalence of antibodies against seasonal influenza A and B viruses in children in Netherlands. Clin. Vaccine Immunol. 18, 469–476 (2011).
14
Davenport F. M., Hennessy A. V., Stuart-Harris C. H., Francis T., Epidemiology of influenza; comparative serological observations in England and the United States. Lancet 266, 469–474 (1955).
15
Koel B. F., Burke D. F., Bestebroer T. M., van der Vliet S., Zondag G. C., Vervaet G., Skepner E., Lewis N. S., Spronken M. I., Russell C. A., Eropkin M. Y., Hurt A. C., Barr I. G., de Jong J. C., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A., Smith D. J., Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science 342, 976–979 (2013).
16
Coudeville L., Bailleux F., Riche B., Megas F., Andre P., Ecochard R., Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: Development and application of a bayesian random-effects model. BMC Med. Res. Methodol. 10, 18 (2010).
17
O’Donnell C. D., Wright A., Vogel L., Boonnak K., Treanor J. J., Subbarao K., Humans and ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus. Clin. Vaccine Immunol. 21, 737–746 (2014).
18
Wrammert J., Smith K., Miller J., Langley W. A., Kokko K., Larsen C., Zheng N. Y., Mays I., Garman L., Helms C., James J., Air G. M., Capra J. D., Ahmed R., Wilson P. C., Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453, 667–671 (2008).
19
Kim J. H., Skountzou I., Compans R., Jacob J., Original antigenic sin responses to influenza viruses. J. Immunol. 183, 3294–3301 (2009).
20
Miller M. S., Gardner T. J., Krammer F., Aguado L. C., Tortorella D., Basler C. F., Palese P., Neutralizing antibodies against previously encountered influenza virus strains increase over time: A longitudinal analysis. Sci. Transl. Med. 5, 198ra107 (2013).
21
Smith D. J., Forrest S., Ackley D. H., Perelson A. S., Variable efficacy of repeated annual influenza vaccination. Proc. Natl. Acad. Sci. U.S.A. 96, 14001–14006 (1999).
22
Pan K., Understanding original antigenic sin in influenza with a dynamical system. PLOS ONE 6, e23910 (2011).
23
Francis T., Salk J. E., Quilligan J. J., Experiences with vaccination against influenza in the spring of 1947: A preliminary report. Am. J. Public Health Nations Health 37, 1013–1016 (1947).
24
Belongia E. A., Kieke B. A., Donahue J. G., Greenlee R. T., Balish A., Foust A., Lindstrom S., Shay D. K.Marshfield Influenza Study Group, Effectiveness of inactivated influenza vaccines varied substantially with antigenic match from the 2004-2005 season to the 2006-2007 season. J. Infect. Dis. 199, 159–167 (2009).
25
Skowronski D. M., De Serres G., Dickinson J., Petric M., Mak A., Fonseca K., Kwindt T. L., Chan T., Bastien N., Charest H., Li Y., Component-specific effectiveness of trivalent influenza vaccine as monitored through a sentinel surveillance network in Canada, 2006-2007. J. Infect. Dis. 199, 168–179 (2009).
26
Bridges C. B., Thompson W. W., Meltzer M. I., Reeve G. R., Talamonti W. J., Cox N. J., Lilac H. A., Hall H., Klimov A., Fukuda K., Effectiveness and cost-benefit of influenza vaccination of healthy working adults: A randomized controlled trial. JAMA 284, 1655–1663 (2000).
27
Beyer W. E. P., Palache A. M., Lüchters G., Nauta J., Osterhaus A. D. M. E., Seroprotection rate, mean fold increase, seroconversion rate: Which parameter adequately expresses seroresponse to influenza vaccination? Virus Res. 103, 125–132 (2004).
28
Kennard R. W., Stone L. A., Computer aided design of experiments. Technometrics 11, 137–148 (1969).
29
Cauchemez S., Horby P., Fox A., Mai Q., Thanh T., Thai P. Q., Hoa N. M., Hien N. T., Ferguson N. M., Influenza infection rates, measurement errors and the interpretation of paired serology. PLOS Pathog. 8, e1003061 (2012).
30
Hannoun C., Megas F., Piercy J., Immunogenicity and protective efficacy of influenza vaccination. Virus Res. 103, 133–138 (2004).
31
WHO Collaborating Centres for Reference and Research on Influenza, Influenza. Antigenic analysis of recent influenza virus isolates and influenza activity in the southern hemisphere. Wkly. Epidemiol. Rec. 72, 293 (1997).
32
World Health Organization, Recommended composition of influenza virus vaccines for use in the 2010 influenza season (southern hemisphere winter). Wkly. Epidemiol. Rec. 84, 421–431 (2009).
33
Purtha W. E., Tedder T. F., Johnson S., Bhattacharya D., Diamond M. S., Memory B cells, but not long-lived plasma cells, possess antigen specificities for viral escape mutants. J. Exp. Med. 208, 2599–2606 (2011).
34
Webster R. G., Laver W. G., Air G. M., Schild G. C., Molecular mechanisms of variation in influenza viruses. Nature 296, 115–121 (1982).
35
Fitch W. M., Leiter J. M. E., Li X. Q., Palese P., Positive Darwinian evolution in human influenza A viruses. Proc. Natl. Acad. Sci. U.S.A. 88, 4270–4274 (1991).

(0)eLetters

eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 346 | Issue 6212
21 November 2014

Submission history

Received: 23 May 2014
Accepted: 3 October 2014
Published in print: 21 November 2014

Permissions

Request permissions for this article.

Acknowledgments

We thank R. Bodewes, J. Bryant, D. Burke, N. Lewis, E. Selkov, B. Mühlemann, G. de Mutsert, and F. Pistoor. We also thank the staff of the Ha Nam Provincial Preventive Medicine Centre, the Hamlet health workers, and the National Institute for Hygiene and Epidemiology, Vietnam, for their support in conducting the fieldwork. We are indebted to the cooperation of the Ha Nam cohort and vaccine study participants. J.M.F. is supported by a Medical Research Council Fellowship (MR/K021885/1) and a Junior Research Fellowship from Homerton College, L.C.K. by the Gates-Cambridge Scholarship and the NIH Oxford-Cambridge Scholars program, and C.A.R. by a Royal Society University Research Fellowship (RG55423). We acknowledge the National Institute of Allergy and Infectious Diseases–NIH Centers of Excellence for Influenza Research and Surveillance contracts HHSN266200700010C and HHSN272201400008C, Nederlandse Organisatie voor Wetenschappelijk Onderzoek VICI grant 91896613, the European Union FP7 programs EMPERIE (223498) and ANTIGONE (278976), Human Frontier Science Program grant P0050/2008, the Wellcome Trust (WT087982MA), and NIH Director’s Pioneer Award DP1-OD000490-01. The Melbourne WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian government Department of Health. A.D.M.E.O. (as Chief Scientific Officer of Viroclinics Biosciences BV) has advisory affiliations with GlaxoSmithKline, Novartis, and Roche. Sequences of the influenza viruses used in this study are available in GenBank with accession numbers: KM821278 to KM821358. Erasmus Medical Center (Rotterdam, the Netherlands) requires a materials transfer agreement for sharing viruses and antisera.

Authors

Affiliations

J. M. Fonville*
Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
World Health Organization (WHO) Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK.
Department of Viroscience, Erasmus Medical Center, Rotterdam 3015 CE, Netherlands.
S. H. Wilks*
Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
World Health Organization (WHO) Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK.
S. L. James
Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
World Health Organization (WHO) Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK.
A. Fox
Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Vietnam.
M. Ventresca
Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
Present address: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907 USA.
M. Aban
WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne VIC 3000, Australia.
L. Xue
WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne VIC 3000, Australia.
T. C. Jones
Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
World Health Organization (WHO) Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK.
Le N. M. H.
Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Vietnam.
Pham Q. T.
National Institute of Hygiene and Epidemiology, Hanoi, Vietnam.
Tran N. D.
National Institute of Hygiene and Epidemiology, Hanoi, Vietnam.
Y. Wong
Oxford University Museum of Natural History, Oxford OX1 3PW, UK.
A. Mosterin
Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
World Health Organization (WHO) Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK.
L. C. Katzelnick
Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
World Health Organization (WHO) Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK.
D. Labonte
Insect Biomechanics Group, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
Le T. T.
National Institute of Hygiene and Epidemiology, Hanoi, Vietnam.
G. van der Net
Department of Viroscience, Erasmus Medical Center, Rotterdam 3015 CE, Netherlands.
E. Skepner
Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
World Health Organization (WHO) Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK.
C. A. Russell
World Health Organization (WHO) Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK.
Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
T. D. Kaplan
bobblewire.com, Saint Louis, MO 63112, USA.
G. F. Rimmelzwaan
Department of Viroscience, Erasmus Medical Center, Rotterdam 3015 CE, Netherlands.
N. Masurel
Department of Viroscience, Erasmus Medical Center, Rotterdam 3015 CE, Netherlands.
Deceased.
J. C. de Jong
Department of Viroscience, Erasmus Medical Center, Rotterdam 3015 CE, Netherlands.
A. Palache
Abbott Laboratories, Weesp 1380 DA, Netherlands.
W. E. P. Beyer
Department of Viroscience, Erasmus Medical Center, Rotterdam 3015 CE, Netherlands.
Le Q. M.
National Institute of Hygiene and Epidemiology, Hanoi, Vietnam.
Nguyen T. H.
National Institute of Hygiene and Epidemiology, Hanoi, Vietnam.
H. F. L. Wertheim
Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Vietnam.
Nuffield Department of Clinical Medicine, Centre for Tropical Medicine, University of Oxford, Oxford OX3 7BN, UK.
A. C. Hurt
WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne VIC 3000, Australia.
Melbourne School of Population and Global Health, University of Melbourne, Parkville VIC 3010, Australia.
A. D. M. E. Osterhaus
Department of Viroscience, Erasmus Medical Center, Rotterdam 3015 CE, Netherlands.
I. G. Barr
WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne VIC 3000, Australia.
R. A. M. Fouchier
Department of Viroscience, Erasmus Medical Center, Rotterdam 3015 CE, Netherlands.
P. W. Horby
Oxford University Clinical Research Unit and Wellcome Trust Major Overseas Programme, Hanoi, Vietnam.
Nuffield Department of Clinical Medicine, Centre for Tropical Medicine, University of Oxford, Oxford OX3 7BN, UK.
Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
World Health Organization (WHO) Collaborating Center for Modeling, Evolution, and Control of Emerging Infectious Diseases, Cambridge CB2 3EJ, UK.
Department of Viroscience, Erasmus Medical Center, Rotterdam 3015 CE, Netherlands.

Notes

*
These authors contributed equally to this work.
§
Corresponding author. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Antibodies induced by an ancestral SARS-CoV-2 strain that cross-neutralize variants from Alpha to Omicron BA.1, Science Immunology, 7, 74, (2022)./doi/10.1126/sciimmunol.abo3425
    Abstract
  2. Antigenic waves of virus–immune coevolution, Proceedings of the National Academy of Sciences, 118, 27, (e2103398118), (2021).https://doi.org/10.1073/pnas.2103398118
    Crossref
  3. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum, Cell, (2021).https://doi.org/10.1016/j.cell.2021.06.020
    Crossref
  4. Immune cellular networks underlying recovery from influenza virus infection in acute hospitalized patients, Nature Communications, 12, 1, (2021).https://doi.org/10.1038/s41467-021-23018-x
    Crossref
  5. Differential immune imprinting by influenza virus vaccination and infection in nonhuman primates, Proceedings of the National Academy of Sciences, 118, 23, (e2026752118), (2021).https://doi.org/10.1073/pnas.2026752118
    Crossref
  6. Original Antigenic Sin: the Downside of Immunological Memory and Implications for COVID-19, mSphere, 6, 2, (2021).https://doi.org/10.1128/mSphere.00056-21
    Crossref
  7. Immunological imprinting of the antibody response in COVID-19 patients, Nature Communications, 12, 1, (2021).https://doi.org/10.1038/s41467-021-23977-1
    Crossref
  8. Antibody Landscape Analysis following Influenza Vaccination and Natural Infection in Humans with a High-Throughput Multiplex Influenza Antibody Detection Assay, mBio, 12, 1, (2021).https://doi.org/10.1128/mBio.02808-20
    Crossref
  9. Quadrivalent influenza nanoparticle vaccines induce broad protection, Nature, 592, 7855, (623-628), (2021).https://doi.org/10.1038/s41586-021-03365-x
    Crossref
  10. Influenza immune escape under heterogeneous host immune histories, Trends in Microbiology, (2021).https://doi.org/10.1016/j.tim.2021.05.009
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media