Advertisement
No access
Research Article

Crystal structure of a heterotetrameric NMDA receptor ion channel

Science
30 May 2014
Vol 344, Issue 6187
pp. 992-997

Intact NMDA receptor structure revealed

For brains to develop and form memories, a signal must be transmitted from one neuron to the next. Glutamate is an important neurotransmitter that excites the receiving nerve cell by binding to an ion channel called an N-Methyl-d-Aspartate (NMDA) receptor. This activates the NMDA receptors, causing calcium ions to flood in, triggering signal transduction. Either under- or overactivation can result in a variety of neurological disorders and diseases. Karakas and Furukawa describe the crystal structure of an intact NMDA receptor composed of four separate subunits.
Science, this issue p. 992

Abstract

N-Methyl-d-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Materials and Methods
Figs. S1 to S16
Table S1
References (4046)

Resources

File (1251915.karakas.sm.pdf)

References and Notes

1
Hayashi T., Effects of sodium glutamate on the nervous system. Keio J. Med. 3, 183–192 (1954).
2
Mayer M. L., Westbrook G. L., Guthrie P. B., Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984).
3
Traynelis S. F., Wollmuth L. P., McBain C. J., Menniti F. S., Vance K. M., Ogden K. K., Hansen K. B., Yuan H., Myers S. J., Dingledine R., Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).
4
Gielen M., Siegler Retchless B., Mony L., Johnson J. W., Paoletti P., Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459, 703–707 (2009).
5
Yuan H., Hansen K. B., Vance K. M., Ogden K. K., Traynelis S. F., Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 29, 12045–12058 (2009).
6
Hansen K. B., Furukawa H., Traynelis S. F., Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol. Pharmacol. 78, 535–549 (2010).
7
Karakas E., Simorowski N., Furukawa H., Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J. 28, 3910–3920 (2009).
8
Karakas E., Simorowski N., Furukawa H., Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475, 249–253 (2011).
9
Mony L., Zhu S., Carvalho S., Paoletti P., Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J. 30, 3134–3146 (2011).
10
Sobolevsky A. I., Rosconi M. P., Gouaux E., X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).
11
Farina A. N., Blain K. Y., Maruo T., Kwiatkowski W., Choe S., Nakagawa T., Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors. J. Neurosci. 31, 3565–3579 (2011).
12
Furukawa H., Singh S. K., Mancusso R., Gouaux E., Subunit arrangement and function in NMDA receptors. Nature 438, 185–192 (2005).
13
Vance K. M., Simorowski N., Traynelis S. F., Furukawa H., Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nat. Commun. 2, 294 (2011).
14
Yao Y., Harrison C. B., Freddolino P. L., Schulten K., Mayer M. L., Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J. 27, 2158–2170 (2008).
15
Jespersen A., Tajima N., Fernandez-Cuervo G., Garnier-Amblard E. C., Furukawa H., Structural insights into competitive antagonism in NMDA receptors. Neuron 81, 366–378 (2014).
16
Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
17
Murshudov G. N., Skubák P., Lebedev A. A., Pannu N. S., Steiner R. A., Nicholls R. A., Winn M. D., Long F., Vagin A. A., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).
18
Schröder G. F., Levitt M., Brunger A. T., Super-resolution biomolecular crystallography with low-resolution data. Nature 464, 1218–1222 (2010).
19
Salussolia C. L., Prodromou M. L., Borker P., Wollmuth L. P., Arrangement of subunits in functional NMDA receptors. J. Neurosci. 31, 11295–11304 (2011).
20
Riou M., Stroebel D., Edwardson J. M., Paoletti P., An alternating GluN1-2-1-2 subunit arrangement in mature NMDA receptors. PLOS ONE 7, e35134 (2012).
21
Das U., Kumar J., Mayer M. L., Plested A. J., Domain organization and function in GluK2 subtype kainate receptors. Proc. Natl. Acad. Sci. U.S.A. 107, 8463–8468 (2010).
22
Rachline J., Perin-Dureau F., Le Goff A., Neyton J., Paoletti P., The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. J. Neurosci. 25, 308–317 (2005).
23
Regalado M. P., Villarroel A., Lerma J., Intersubunit cooperativity in the NMDA receptor. Neuron 32, 1085–1096 (2001).
24
Kashiwagi K., Fukuchi J., Chao J., Igarashi K., Williams K., An aspartate residue in the extracellular loop of the N-methyl-d-aspartate receptor controls sensitivity to spermine and protons. Mol. Pharmacol. 49, 1131–1141 (1996).
25
Lau A. Y., Salazar H., Blachowicz L., Ghisi V., Plested A. J., Roux B., A conformational intermediate in glutamate receptor activation. Neuron 79, 492–503 (2013).
26
Zheng F., Erreger K., Low C. M., Banke T., Lee C. J., Conn P. J., Traynelis S. F., Allosteric interaction between the amino terminal domain and the ligand binding domain of NR2A. Nat. Neurosci. 4, 894–901 (2001).
27
Vance K. M., Hansen K. B., Traynelis S. F., GluN1 splice variant control of GluN1/GluN2D NMDA receptors. J. Physiol. 590, 3857–3875 (2012).
28
Traynelis S. F., Hartley M., Heinemann S. F., Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268, 873–876 (1995).
29
Inanobe A., Furukawa H., Gouaux E., Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron 47, 71–84 (2005).
30
Zuo J., De Jager P. L., Takahashi K. A., Jiang W., Linden D. J., Heintz N., Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388, 769–773 (1997).
31
Zhou Y., Morais-Cabral J. H., Kaufman A., MacKinnon R., Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414, 43–48 (2001).
32
Long S. B., Tao X., Campbell E. B., MacKinnon R., Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).
33
Ye S., Li Y., Jiang Y., Novel insights into K+ selectivity from high-resolution structures of an open K+ channel pore. Nat. Struct. Mol. Biol. 17, 1019–1023 (2010).
34
Li W., Aldrich R. W., Activation of the SK potassium channel-calmodulin complex by nanomolar concentrations of terbium. Proc. Natl. Acad. Sci. U.S.A. 106, 1075–1080 (2009).
35
Liddington R. C., Yan Y., Moulai J., Sahli R., Benjamin T. L., Harrison S. C., Structure of simian virus 40 at 3.8-A resolution. Nature 354, 278–284 (1991).
36
Watanabe J., Beck C., Kuner T., Premkumar L. S., Wollmuth L. P., DRPEER: A motif in the extracellular vestibule conferring high Ca2+ flux rates in NMDA receptor channels. J. Neurosci. 22, 10209–10216 (2002).
37
Imoto K., Busch C., Sakmann B., Mishina M., Konno T., Nakai J., Bujo H., Mori Y., Fukuda K., Numa S., Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988).
38
Kawate T., Michel J. C., Birdsong W. T., Gouaux E., Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460, 592–598 (2009).
39
Siegler Retchless B., Gao W., Johnson J. W., A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat. Neurosci. 15, 406–413, S1–S2 (2012).
40
Fitzgerald D. J., Berger P., Schaffitzel C., Yamada K., Richmond T. J., Berger I., Protein complex expression by using multigene baculoviral vectors. Nat. Methods 3, 1021–1032 (2006).
41
Otwinowski Z., Minor W., Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
42
McCoy A. J., Grosse-Kunstleve R. W., Adams P. D., Winn M. D., Storoni L. C., Read R. J., Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
43
Emsley P., Cowtan K., Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
44
Nicholls R. A., Long F., Murshudov G. N., Low-resolution refinement tools in REFMAC5. Acta Crystallogr. D Biol. Crystallogr. 68, 404–417 (2012).
45
Adams P. D., Afonine P. V., Bunkóczi G., Chen V. B., Davis I. W., Echols N., Headd J. J., Hung L. W., Kapral G. J., Grosse-Kunstleve R. W., McCoy A. J., Moriarty N. W., Oeffner R., Read R. J., Richardson D. C., Richardson J. S., Terwilliger T. C., Zwart P. H., PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
46
Davis I. W., Murray L. W., Richardson J. S., Richardson D. C., MolProbity: Structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32 (Web Server), W615–W619 (2004).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 344 | Issue 6187
30 May 2014

Submission history

Received: 7 February 2014
Accepted: 2 May 2014
Published in print: 30 May 2014

Permissions

Request permissions for this article.

Acknowledgments

We thank staffs at the 23-ID-B and D beamlines at the Advanced Photon System in the Argonne National Laboratory and the BL41XU beamline at the Spring 8 for their excellent beamline supports. We thank N. Simorowski for her technical support, H. Yuan and S. Traynelis for sharing unpublished data with us and for critical comments on this manuscript, and S. Harrison for making important comments on this work. This work was supported by NIH (MH085926 to H.F.), Mirus Research Award (to H.F.), and a Robertson Research Fund of Cold Spring Harbor Laboratory (to H.F.). Coordinates and structure factors have been deposited in the Protein Data Bank under accession code 4PE5. DNA constructs, recombinant virus, and proteins used in this study are available from H.F. under a material transfer agreement with Cold Spring Harbor Laboratory.

Authors

Affiliations

Erkan Karakas
Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
Hiro Furukawa* [email protected]
Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.

Notes

*
Corresponding author. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage
Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. A novel NMDA receptor test model based on hiPSC-derived neural cells, Biological Chemistry, 404, 4, (267-277), (2023).https://doi.org/10.1515/hsz-2022-0216
    Crossref
  2. Transsynaptic Signaling of Ephs in Synaptic Development, Plasticity, and Disease, Neuroscience, 508, (137-152), (2023).https://doi.org/10.1016/j.neuroscience.2022.11.030
    Crossref
  3. N -Methyl-D-Aspartate Receptors , The Oxford Handbook of Neuronal Ion Channels, (343-373), (2023).https://doi.org/10.1093/oxfordhb/9780190669164.013.16
    Crossref
  4. The pathogenic N650K variant in the GluN1 subunit regulates the trafficking, conductance, and pharmacological properties of NMDA receptors, Neuropharmacology, 222, (109297), (2023).https://doi.org/10.1016/j.neuropharm.2022.109297
    Crossref
  5. Novel neuroactive steroids as positive allosteric modulators of NMDA receptors: mechanism, site of action, and rescue pharmacology on GRIN variants associated with neurological conditions, Cellular and Molecular Life Sciences, 80, 2, (2023).https://doi.org/10.1007/s00018-022-04667-7
    Crossref
  6. Novel GluN2B-Selective NMDA Receptor Negative Allosteric Modulator Possesses Intrinsic Analgesic Properties and Enhances Analgesia of Morphine in a Rodent Tail Flick Pain Model, ACS Chemical Neuroscience, 14, 5, (917-935), (2023).https://doi.org/10.1021/acschemneuro.2c00779
    Crossref
  7. Does lithium attenuate the liver damage due to oxidative stress and liver glycogen depletion in experimental common bile duct obstruction?, Toxicology and Applied Pharmacology, 466, (116489), (2023).https://doi.org/10.1016/j.taap.2023.116489
    Crossref
  8. α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid and Kainate Receptors, The Oxford Handbook of Neuronal Ion Channels, (291-342), (2023).https://doi.org/10.1093/oxfordhb/9780190669164.013.8
    Crossref
  9. Functional crosstalk of the glycine transporter GlyT1 and NMDA receptors, Neuropharmacology, 232, (109514), (2023).https://doi.org/10.1016/j.neuropharm.2023.109514
    Crossref
  10. Functional effects of disease-associated variants reveal that the S1–M1 linker of the NMDA receptor critically controls channel opening, Cellular and Molecular Life Sciences, 80, 4, (2023).https://doi.org/10.1007/s00018-023-04705-y
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media