No access

Type 6 Secretion System–Mediated Immunity to Type 4 Secretion System–Mediated Gene Transfer

11 Oct 2013
Vol 342, Issue 6155
pp. 250-253

Bacterial Détente?

Type VI secretion systems (T6SS) correspond to dynamic intracellular organelles that are functionally analogous to contractile bacteriophage tails. The T6SS of several bacteria species have been found to be responsible for antagonistic behavior that likely reflects the translocation of toxic proteins (effectors) between cells. Pseudomonas aeruginosa is able to sense exogenous T6SS attack and assemble its own T6SS apparatus to launch a retaliatory attack aimed directly at the attacker. Now, Ho et al. (p. 250) describe how exogenous attack is sensed in a process that involves membrane disruption and suggest that the T6SS provides a general cellular defense mechanism against not only T6SS but also conjugative DNA elements delivered via the type IV secretion system involved in mating pair formation.


Gram-negative bacteria use the type VI secretion system (T6SS) to translocate toxic effector proteins into adjacent cells. The Pseudomonas aeruginosa H1-locus T6SS assembles in response to exogenous T6SS attack by other bacteria. We found that this lethal T6SS counterattack also occurs in response to the mating pair formation (Mpf) system encoded by broad-host-range IncPα conjugative plasmid RP4 present in adjacent donor cells. This T6SS response was eliminated by disruption of Mpf structural genes but not components required only for DNA transfer. Because T6SS activity was also strongly induced by membrane-disrupting natural product polymyxin B, we conclude that RP4 induces “donor-directed T6SS attacks” at sites corresponding to Mpf-mediated membrane perturbations in recipient P. aeruginosa cells to potentially block acquisition of parasitic foreign DNA.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material


Materials and Methods
Table S1
References (30, 31)
Movies S1 and S2


File (1243745s1.mp4)
File (1243745s2.mp4)
File (ho-sm.pdf)

References and Notes

Hibbing M. E., Fuqua C., Parsek M. R., Peterson S. B., Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).
Pukatzki S., Ma A. T., Sturtevant D., Krastins B., Sarracino D., Nelson W. C., Heidelberg J. F., Mekalanos J. J., Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl. Acad. Sci. U.S.A. 103, 1528–1533 (2006).
Boyer F., Fichant G., Berthod J., Vandenbrouck Y., Attree I., Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: What can be learned from available microbial genomic resources? BMC Genomics 10, 104 (2009).
Leiman P. G., Basler M., Ramagopal U. A., Bonanno J. B., Sauder J. M., Pukatzki S., Burley S. K., Almo S. C., Mekalanos J. J., Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl. Acad. Sci. U.S.A. 106, 4154–4159 (2009).
Basler M., Pilhofer M., Henderson G. P., Jensen G. J., Mekalanos J. J., Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483, 182–186 (2012).
Dong T. G., Ho B. T., Yoder-Himes D. R., Mekalanos J. J., Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc. Natl. Acad. Sci. U.S.A. 110, 2623–2628 (2013).
Hood R. D., Singh P., Hsu F., Güvener T., Carl M. A., Trinidad R. R., Silverman J. M., Ohlson B. B., Hicks K. G., Plemel R. L., Li M., Schwarz S., Wang W. Y., Merz A. J., Goodlett D. R., Mougous J. D., A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010).
Mougous J. D., Cuff M. E., Raunser S., Shen A., Zhou M., Gifford C. A., Goodman A. L., Joachimiak G., Ordoñez C. L., Lory S., Walz T., Joachimiak A., Mekalanos J. J., A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006).
Basler M., Mekalanos J. J., Type 6 secretion dynamics within and between bacterial cells. Science 337, 815 (2012).
Basler M., Ho B. T., Mekalanos J. J., Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152, 884–894 (2013).
Luo Z. Q., Isberg R. R., Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc. Natl. Acad. Sci. U.S.A. 101, 841–846 (2004).
Pansegrau W., Lanka E., Barth P. T., Figurski D. H., Guiney D. G., Haas D., Helinski D. R., Schwab H., Stanisich V. A., Thomas C. M., Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J. Mol. Biol. 239, 623–663 (1994).
Christie P. J., Vogel J. P., Bacterial type IV secretion: Conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8, 354–360 (2000).
Schröder G., Lanka E., The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid 54, 1–25 (2005).
Giebelhaus L. A., Frost L., Lanka E., Gormley E. P., Davies J. E., Leskiw B., The Tra2 core of the IncP(alpha) plasmid RP4 is required for intergeneric mating between Escherichia coli and Streptomyces lividans. J. Bacteriol. 178, 6378–6381 (1996).
Li Z., Hiasa H., Kumar U., DiGate R. J., The traE gene of plasmid RP4 encodes a homologue of Escherichia coli DNA topoisomerase III. J. Biol. Chem. 272, 19582–19587 (1997).
Haase J., Lurz R., Grahn A. M., Bamford D. H., Lanka E., Bacterial conjugation mediated by plasmid RP4: RSF1010 mobilization, donor-specific phage propagation, and pilus production require the same Tra2 core components of a proposed DNA transport complex. J. Bacteriol. 177, 4779–4791 (1995).
Fernandez D., Spudich G. M., Zhou X. R., Christie P. J., The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J. Bacteriol. 178, 3168–3176 (1996).
Bayer M., Eferl R., Zellnig G., Teferle K., Dijkstra A., Koraimann G., Högenauer G., Gene 19 of plasmid R1 is required for both efficient conjugative DNA transfer and bacteriophage R17 infection. J. Bacteriol. 177, 4279–4288 (1995).
Langer P. J., Shanabruch W. G., Walker G. C., Functional organization of plasmid pKM101. J. Bacteriol. 145, 1310–1316 (1981).
Zhong Z., Helinski D., Toukdarian A., Plasmid host-range: Restrictions to F replication in Pseudomonas. Plasmid 54, 48–56 (2005).
Rietsch A., Vallet-Gely I., Dove S. L., Mekalanos J. J., Exs E., ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 102, 8006–8011 (2005).
Simon R., Priefer U., Pühler A., A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1, 784–791 (1983).
Morrison D. C., Jacobs D. M., Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13, 813–818 (1976).
McPhee J. B., Lewenza S., Hancock R. E., Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 50, 205–217 (2003).
Hankins J. V., Madsen J. A., Giles D. K., Brodbelt J. S., Trent M. S., Amino acid addition to Vibrio cholerae LPS establishes a link between surface remodeling in gram-positive and gram-negative bacteria. Proc. Natl. Acad. Sci. U.S.A. 109, 8722–8727 (2012).
Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D. A., Horvath P., CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).
Horvath P., Barrangou R., CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).
Naito T., Kusano K., Kobayashi I., Selfish behavior of restriction-modification systems. Science 267, 897–899 (1995).
Casadaban M. J., Cohen S. N., Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138, 179–207 (1980).
Guzman L. M., Belin D., Carson M. J., Beckwith J., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).


eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors


Published In

Volume 342 | Issue 6155
11 October 2013

Submission history

Received: 25 July 2013
Accepted: 6 September 2013
Published in print: 11 October 2013


Request permissions for this article.


Supporting movies and table can be found in the supplementary materials. This work was supported by National Institute of Allergy and Infectious Diseases grants AI-018045 and AI-26289 to J.J.M.



Brian T. Ho
Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
Marek Basler
Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
John J. Mekalanos* [email protected]
Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.


Corresponding author. E-mail: [email protected]

Metrics & Citations


Article Usage


Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. RcsB-dependent regulation of type VI secretion system in porcine extra-intestinal pathogenic Escherichia coli, Gene, 768, (145289), (2021).
  2. Harnessing the plant microbiome to promote the growth of agricultural crops, Microbiological Research, 245, (126690), (2021).
  3. Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili, eLife, 10, (2021).
  4. Activation of a bacterial killing machine, PLOS Genetics, 17, 1, (e1009261), (2021).
  5. Colistin Dependence in Extensively Drug-Resistant Acinetobacter baumannii Strain Is Associated with ISAjo2 and ISAba13 Insertions and Multiple Cellular Responses, International Journal of Molecular Sciences, 22, 2, (576), (2021).
  6. A Tad-like apparatus is required for contact-dependent prey killing in predatory social bacteria, eLife, 10, (2021).
  7. CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa, The ISME Journal, 15, 5, (1420-1433), (2020).
  8. Endogenous membrane stress induces T6SS activity in Pseudomonas aeruginosa , Proceedings of the National Academy of Sciences, 118, 1, (e2018365118), (2020).
  9. The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii , mBio, 11, 1, (2020).
  10. Secretome of Microbiota in Extreme Conditions, Microbial Versatility in Varied Environments, (85-99), (2020).

View Options

Check Access

Log in to view the full text


AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text








Share article link

Share on social media