No access
Special Issue Review

Structural and Functional Brain Networks: From Connections to Cognition

1 Nov 2013
Vol 342, Issue 6158

Structured Abstract


The human brain presents a puzzling and challenging paradox: Despite a fixed anatomy, characterized by its connectivity, its functional repertoire is vast, enabling action, perception, and cognition. This contrasts with organs like the heart that have a dynamic anatomy but just one function. The resolution of this paradox may reside in the brain's network architecture, which organizes local interactions to cope with diverse environmental demands—ensuring adaptability, robustness, resilience to damage, efficient message passing, and diverse functionality from a fixed structure. This review asks how recent advances in understanding brain networks elucidate the brain’s many-to-one (degenerate) function-structure relationships. In other words, how does diverse function arise from an apparently static neuronal architecture? We conclude that the emergence of dynamic functional connectivity, from static structural connections, calls for formal (computational) approaches to neuronal information processing that may resolve the dialectic between structure and function.


Much of our understanding of brain connectivity rests on the way that it is measured and modeled. We consider two complementary approaches: the first has its basis in graph theory that aims to describe the network topology of (undirected) connections of the sort measured by noninvasive brain imaging of anatomical connections and functional connectivity (correlations) between remote sites. This is compared with model-based definitions of context-sensitive (directed) effective connectivity that are grounded in the biophysics of neuronal interactions.
Recent topological network analyses of brain circuits suggest that modular and hierarchical structural networks are particularly suited for the functional integration of local (functionally specialized) neuronal operations that underlie cognition. Measurements of spontaneous activity reveal functional connectivity patterns that are similar to structural connectivity, suggesting that structural networks constrain functional networks. However, task-related responses that require context-sensitive integration disclose a divergence between function and structure that appears to rest mainly on long-range connections. In contrast to methods that describe network topology phenomenologically, model-based theoretical and computational approaches focus on the mechanisms of neuronal interactions that accommodate the dynamic reconfiguration of effective connectivity.
We highlight the consilience between hierarchical topologies (based on structural and functional connectivity) and the effective connectivity that would be required for hierarchical message passing of the sort suggested by computational neuroscience.


In summary, neuronal interactions represent dynamics on a fixed structural connectivity that underlie cognition and behavior. Such divergence of function from structure is, perhaps, the most intriguing property of the brain and invites intensive future research. By studying the dynamics and self-organization of functional networks, we may gain insight into the true nature of the brain as the embodiment of the mind. The repertoire of functional networks rests upon the (hidden) structural architecture of connections that enables hierarchical functional integration. Understanding these networks will require theoretical models of neuronal processing that underlies cognition.


How rich functionality emerges from the invariant structural architecture of the brain remains a major mystery in neuroscience. Recent applications of network theory and theoretical neuroscience to large-scale brain networks have started to dissolve this mystery. Network analyses suggest that hierarchical modular brain networks are particularly suited to facilitate local (segregated) neuronal operations and the global integration of segregated functions. Although functional networks are constrained by structural connections, context-sensitive integration during cognition tasks necessarily entails a divergence between structural and functional networks. This degenerate (many-to-one) function-structure mapping is crucial for understanding the nature of brain networks. The emergence of dynamic functional networks from static structural connections calls for a formal (computational) approach to neuronal information processing that may resolve this dialectic between structure and function.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

Watts D. J., Strogatz S. H., Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998). 10.1038/30918
Sporns O., Network attributes for segregation and integration in the human brain. Curr. Opin. Neurobiol. 23, 162–171 (2013). 10.1016/j.conb.2012.11.015
Edelman G. M., Gally J. A., Degeneracy and complexity in biological systems. Proc. Natl. Acad. Sci. U.S.A. 98, 13763–13768 (2001). 10.1073/pnas.231499798
Price C. J., Friston K. J., Degeneracy and cognitive anatomy. Trends Cogn. Sci. 6, 416–421 (2002). 10.1016/S1364-6613(02)01976-9
Wig G. S., Schlaggar B. L., Petersen S. E., Concepts and principles in the analysis of brain networks. Ann. N. Y. Acad. Sci. 1224, 126–146 (2011). 10.1111/j.1749-6632.2010.05947.x
Friston K. J., Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp. 2, 56–78 (1994). 10.1002/hbm.460020107
Basser P. J., Mattiello J., LeBihan D., MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994). 10.1016/S0006-3495(94)80775-1
Park H. J., Kubicki M., Westin C. F., Talos I. F., Brun A., Peiper S., Kikinis R., Jolesz F. A., McCarley R. W., Shenton M. E., Method for combining information from white matter fiber tracking and gray matter parcellation. AJNR Am. J. Neuroradiol. 25, 1318–1324 (2004).15466325
Hagmann P., Kurant M., Gigandet X., Thiran P., Wedeen V. J., Meuli R., Thiran J. P., Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2, e597 (2007). 10.1371/journal.pone.0000597
Biswal B., Yetkin Z. F., Haughton V. M., Hyde J. S., Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995). 10.1002/mrm.1910340409
Markov N. T., Misery P., Falchier A., Lamy C., Vezoli J., Quilodran R., Gariel M. A., Giroud P., Ercsey-Ravasz M., Pilaz L. J., Huissoud C., Barone P., Dehay C., Toroczkai Z., Van Essen D. C., Kennedy H., Knoblauch K., Weight consistency specifies regularities of macaque cortical networks. Cereb. Cortex 21, 1254–1272 (2011). 10.1093/cercor/bhq201
Gallos L. K., Makse H. A., Sigman M., A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc. Natl. Acad. Sci. U.S.A. 109, 2825–2830 (2012). 10.1073/pnas.1106612109
Adachi Y., Osada T., Sporns O., Watanabe T., Matsui T., Miyamoto K., Miyashita Y., Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cereb. Cortex 22, 1586–1592 (2012). 10.1093/cercor/bhr234
Sporns O., Zwi J. D., The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004). 10.1385/NI:2:2:145
Bullmore E., Sporns O., The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).22498897
van den Heuvel M. P., Sporns O., Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011). 10.1523/JNEUROSCI.3539-11.2011
Towlson E. K., Vértes P. E., Ahnert S. E., Schafer W. R., Bullmore E. T., The rich club of the C. elegans neuronal connectome. J. Neurosci. 33, 6380–6387 (2013). 10.1523/JNEUROSCI.3784-12.2013
Harriger L., van den Heuvel M. P., Sporns O., Rich club organization of macaque cerebral cortex and its role in network communication. PLOS ONE 7, e46497 (2012). 10.1371/journal.pone.0046497
Alstott J., Breakspear M., Hagmann P., Cammoun L., Sporns O., Modeling the impact of lesions in the human brain. PLOS Comput. Biol. 5, e1000408 (2009). 10.1371/journal.pcbi.1000408
van den Heuvel M. P., Sporns O., Collin G., Scheewe T., Mandl R. C., Cahn W., Goñi J., Hulshoff Pol H. E., Kahn R. S., Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatr. 70, 783–792 (2013). 10.1001/jamapsychiatry.2013.1328
Meunier D., Lambiotte R., Fornito A., Ersche K. D., Bullmore E. T., Hierarchical modularity in human brain functional networks. Front. Neuroinform. 3, 37 (2009). 10.3389/neuro.11.037.2009
Raichle M. E., The restless brain. Brain Connect. 1, 3–12 (2011). 10.1089/brain.2011.0019
Smith S. M., Fox P. T., Miller K. L., Glahn D. C., Fox P. M., Mackay C. E., Filippini N., Watkins K. E., Toro R., Laird A. R., Beckmann C. F., Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. U.S.A. 106, 13040–13045 (2009). 10.1073/pnas.0905267106
Laird A. R., Eickhoff S. B., Rottschy C., Bzdok D., Ray K. L., Fox P. T., Networks of task co-activations. Neuroimage 80, 505–514 (2013). 10.1016/j.neuroimage.2013.04.073
Smith S. M., Miller K. L., Moeller S., Xu J., Auerbach E. J., Woolrich M. W., Beckmann C. F., Jenkinson M., Andersson J., Glasser M. F., Van Essen D. C., Feinberg D. A., Yacoub E. S., Ugurbil K., Temporally-independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci. U.S.A. 109, 3131–3136 (2012). 10.1073/pnas.1121329109
Park B., Kim J. I., Lee D., Jeong S. O., Lee J. D., Park H. J., Are brain networks stable during a 24-hour period? Neuroimage 59, 456–466 (2012). 10.1016/j.neuroimage.2011.07.049
Allen E. A., Damaraju E., Plis S. M., Erhardt E. B., Eichele T., Calhoun V. D., Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex (2012). 10.1093/cercor/bhs352
Greicius M. D., Supekar K., Menon V., Dougherty R. F., Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009). 10.1093/cercor/bhn059
Honey C. J., Sporns O., Cammoun L., Gigandet X., Thiran J. P., Meuli R., Hagmann P., Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040 (2009). 10.1073/pnas.0811168106
Shen K., Bezgin G., Hutchison R. M., Gati J. S., Menon R. S., Everling S., McIntosh A. R., Information processing architecture of functionally defined clusters in the macaque cortex. J. Neurosci. 32, 17465–17476 (2012). 10.1523/JNEUROSCI.2709-12.2012
Hermundstad A. M., Bassett D. S., Brown K. S., Aminoff E. M., Clewett D., Freeman S., Frithsen A., Johnson A., Tipper C. M., Miller M. B., Grafton S. T., Carlson J. M., Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl. Acad. Sci. U.S.A. 110, 6169–6174 (2013). 10.1073/pnas.1219562110
Ekman M., Derrfuss J., Tittgemeyer M., Fiebach C. J., Predicting errors from reconfiguration patterns in human brain networks. Proc. Natl. Acad. Sci. U.S.A. 109, 16714–16719 (2012). 10.1073/pnas.1207523109
Zeki S., Shipp S., The functional logic of cortical connections. Nature 335, 311–317 (1988). 10.1038/335311a0
Mumford D., On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol. Cybern. 66, 241–251 (1992). 10.1007/BF00198477
Mountcastle V. B., The columnar organization of the neocortex. Brain 120, 701–722 (1997). 10.1093/brain/120.4.701
Bastos A. M., Usrey W. M., Adams R. A., Mangun G. R., Fries P., Friston K. J., Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012). 10.1016/j.neuron.2012.10.038
Douglas R. J., Koch C., Mahowald M., Martin K. A., Suarez H. H., Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995). 10.1126/science.7638624
Clark A., Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013). 10.1017/S0140525X12000477
Friston K., The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010). 10.1038/nrn2787
S. L. Bressler, A. R. McIntosh, in Handbook of Brain Connectivity, V. Jirsa, A. R. McIntosh, Eds. (Springer-Verlag, New York, 2007), pp. 403–419.
Gerstein G. L., Bedenbaugh P., Aertsen M. H., Neuronal assemblies. IEEE Trans. Biomed. Eng. 36, 4–14 (1989). 10.1109/10.16444
Friston K., Moran R., Seth A. K., Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 23, 172–178 (2013). 10.1016/j.conb.2012.11.010
Smith S. M., Miller K. L., Salimi-Khorshidi G., Webster M., Beckmann C. F., Nichols T. E., Ramsey J. D., Woolrich M. W., Network modelling methods for FMRI. Neuroimage 54, 875–891 (2011). 10.1016/j.neuroimage.2010.08.063
Friston K. J., Li B., Daunizeau J., Stephan K. E., Network discovery with DCM. Neuroimage 56, 1202–1221 (2011). 10.1016/j.neuroimage.2010.12.039
Lichtman J. W., Denk W., The big and the small: Challenges of imaging the brain’s circuits. Science 334, 618–623 (2011). 10.1126/science.1209168
Chung K., Wallace J., Kim S. Y., Kalyanasundaram S., Andalman A. S., Davidson T. J., Mirzabekov J. J., Zalocusky K. A., Mattis J., Denisin A. K., Pak S., Bernstein H., Ramakrishnan C., Grosenick L., Gradinaru V., Deisseroth K., Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013). 10.1038/nature12107
Bassett D. S., Wymbs N. F., Porter M. A., Mucha P. J., Carlson J. M., Grafton S. T., Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. U.S.A. 108, 7641–7646 (2011). 10.1073/pnas.1018985108
Marder E., Neuromodulation of neuronal circuits: Back to the future. Neuron 76, 1–11 (2012). 10.1016/j.neuron.2012.09.010


eLetters is an online forum for ongoing peer review. Submission of eLetters are open to all. eLetters are not edited, proofread, or indexed. Please read our Terms of Service before submitting your own eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors


Published In

Volume 342 | Issue 6158
1 November 2013

Submission history

Published in print: 1 November 2013


Request permissions for this article.


This research was supported by the Brain Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT, and Future Planning (20100018839 for H.J.P.). K.F. is supported by the Wellcome trust. The authors thank L. Quattrocki Knight, D.-J. Kim, B. Park, and two anonymous reviewers for helpful discussions and suggestions; especially B. Park for preparing the material for this review.



Hae-Jeong Park* [email protected]
Department of Nuclear Medicine, Psychiatry, Severance Biomedical Science Institute, BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
Karl Friston
The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK.


Corresponding author. E-mail: [email protected]

Metrics & Citations


Article Usage


Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Network neuroscience and the connectomics revolution, Connectomic Deep Brain Stimulation, (25-58), (2022).
  2. Variability of cardiorespiratory interactions under different breathing patterns, Biomedical Signal Processing and Control, 71, (103152), (2022).
  3. The cerebral changes induced by exercise interventions in people with mild cognitive impairment and Alzheimer's disease: A systematic review, Archives of Gerontology and Geriatrics, 98, (104547), (2022).
  4. Astrocyte dysfunction drives abnormal resting-state functional connectivity in depression, Science Advances, 8, 46, (2022)./doi/10.1126/sciadv.abo2098
  5. Energy constraints on brain network formation, Scientific Reports, 11, 1, (2021).
  6. Linking cortical circuit models to human cognition with laminar fMRI, Neuroscience & Biobehavioral Reviews, 128, (467-478), (2021).
  7. B-Tensor: Brain Connectome Tensor Factorization for Alzheimer's Disease, IEEE Journal of Biomedical and Health Informatics, 25, 5, (1591-1600), (2021).
  8. Neural and phenotypic representation under the free-energy principle, Neuroscience & Biobehavioral Reviews, 120, (109-122), (2021).
  9. Perturbation of resting-state network nodes preferentially propagates to structurally rather than functionally connected regions, Scientific Reports, 11, 1, (2021).
  10. Revisiting the global workspace orchestrating the hierarchical organization of the human brain, Nature Human Behaviour, 5, 4, (497-511), (2021).
  11. See more

View Options

Check Access

Log in to view the full text


AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.
More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text








Share article link

Share on social media