Type 1 Interferons and the Virus-Host Relationship: A Lesson in Détente
Abstract
The interface between an infectious agent and its host represents the ultimate battleground for survival: The microbe must secure a niche for replication, whereas the host must limit the pathogen's advance. Among the host's arsenal of antimicrobial factors, the type 1 interferons (IFNs) induce potent defense mechanisms against viruses and are key in the host-virus standoff. Viruses have evolved multiple tricks to avoid the immediate antiviral effects of IFNs and, in turn, hosts have adapted use of this innate cytokine system to galvanize multiple additional layers of immune defense. The plasticity that exists in these interactions provides us with a lesson in détente.
Get full access to this article
View all available purchase options and get full access to this article.
Already a subscriber or AAAS Member? Log In
References and Notes
1
R. Medzhitov, C. A. Janeway Jr., Semin. Immunol.10, 351 (1998).
2
S. S. Diebold, T. Kaisho, H. Hemmi, S. Akira, C. Reis e Sousa, Science303, 1529 (2004).
3
F. Heil et al., Science303, 1526 (2004).
4
J. M. Lund et al., Proc. Natl. Acad. Sci. U.S.A.101, 5598 (2004).
5
H. Hemmi et al., Nature408, 740 (2000).
6
L. Alexopoulou, A. C. Holt, R. Medzhitov, R. A. Flavell, Nature413, 732 (2001).
7
T. Kawai, S. Akira, Cell Death Differ.13, 816 (2006).
8
M. G. Wathelet et al., Mol. Cell1, 507 (1998).
9
I. Marie, J. E. Durbin, D. E. Levy, EMBO J.17, 6660 (1998).
10
H. Kato et al., Immunity23, 19 (2005).
11
M. Yoneyama et al., Nat. Immunol.5, 730 (2004).
12
R. B. Seth, L. Sun, C. K. Ea, Z. J. Chen, Cell122, 669 (2005).
13
T. Kawai et al., Nat. Immunol.6, 981 (2005).
14
L. G. Xu et al., Mol. Cell19, 727 (2005).
15
E. Meylan et al., Nature437, 1167 (2005).
16
K. J. Ishii et al., Nat. Immunol.7, 40 (2006).
17
D. B. Stetson, R. Medzhitov, Immunity24, 93 (2006).
18
M. M. Brierley, E. N. Fish, J. Interferon Cytokine Res.22, 835 (2002).
19
L. C. Platanias, Nat. Rev. Immunol.5, 375 (2005).
20
C. A. Biron, G. C. Sen, in Fields Virology, Fourth Edition, D. M. Knipe et al., Eds. (Lippincott, Williams, and Wilkins, Philadelphia, 2001), pp. 321–351.
21
K. B. Nguyen et al., Nat. Immunol.1, 70 (2000).
22
K. B. Nguyen et al., Science297, 2063 (2002).
23
S. S. Cho et al., J. Immunol.157, 4781 (1996).
24
B. Hahm, M. J. Trifilo, E. I. Zuniga, M. B. Oldstone, Immunity22, 247 (2005).
25
C. E. Samuel, Clin. Microbiol. Rev.14, 778 (2001).
26
A. Zhou, J. M. Paranjape, S. D. Der, B. R. Williams, R. H. Silverman, Virology258, 435 (1999).
27
M. Dalod et al., J. Exp. Med.197, 885 (2003).
28
C. K. Lee et al., J. Immunol.165, 3571 (2000).
29
K. B. Nguyen et al., J. Immunol.169, 4279 (2002).
30
C. L. Karp, C. A. Biron, D. N. Irani, Immunol. Today21, 24 (2000).
31
X. Zhang, S. Sun, I. Hwang, D. F. Tough, J. Sprent, Immunity8, 591 (1998).
32
J. F. Bromberg, C. M. Horvath, Z. Wen, R. D. Schreiber, J. E. Darnell Jr., Proc. Natl. Acad. Sci. U.S.A.93, 7673 (1996).
33
M. P. Gil, R. Salomon, J. Louten, C. A. Biron, Blood107, 987 (2006).
34
M. P. Gil et al., Proc. Natl. Acad. Sci. U.S.A.98, 6680 (2001).
35
C. V. Ramana et al., EMBO J.19, 263 (2000).
36
G. A. Kolumam, S. Thomas, L. J. Thompson, J. Sprent, K. Murali-Krishna, J. Exp. Med.202, 637 (2005).
37
A. Gallimore et al., J. Exp. Med.187, 1383 (1998).
38
R. Gimeno, C. K. Lee, C. Schindler, D. E. Levy, Mol. Cell. Biol.25, 5456 (2005).
39
C. K. Lee, E. Smith, R. Gimeno, R. Gertner, D. E. Levy, J. Immunol.164, 1286 (2000).
40
Y. Tanabe et al., J. Immunol.174, 609 (2005).
41
J. Talon et al., Proc. Natl. Acad. Sci. U.S.A.97, 4309 (2000).
42
Y. Xiang et al., J. Virol.76, 5251 (2002).
43
J. Andrejeva et al., Proc. Natl. Acad. Sci. U.S.A.101, 17264 (2004).
44
K. Li et al., Proc. Natl. Acad. Sci. U.S.A.102, 2992 (2005).
45
G. Unterstab et al., Proc. Natl. Acad. Sci. U.S.A.102, 13640 (2005).
46
J. A. Symons, A. Alcami, G. L. Smith, Cell81, 551 (1995).
47
C. M. Horvath, Eur. J. Biochem.271, 4621 (2004).
48
O. Haller, G. Kochs, F. Weber, Virology344, 119 (2006).
49
M. G. Katze, Y. He, M. Gale Jr., Nat. Rev. Immunol.2, 675 (2002).
50
G. K. Geiss et al., Proc. Natl. Acad. Sci. U.S.A.99, 10736 (2002).
51
T. M. Tumpey et al., Science310, 77 (2005).
52
S. Dupuis et al., Nat. Genet.33, 388 (2003).
53
J. E. Durbin, R. Hackenmiller, M. C. Simon, D. E. Levy, Cell84, 443 (1996).
54
S. M. Karst, C. E. Wobus, M. Lay, J. Davidson, H. W. Virgin, Science299, 1575 (2003).
55
M. A. Meraz et al., Cell84, 431 (1996).
56
Work in A.G.-S.'s lab is supported by NIH grants R01AI46954, P01AI52106, P01AI58113, U54AI57158, and U19AI62623, and DOD grant W81XWH-04-1-0876. Work in C.A.B.'s lab is supported by NIH grants RO1CA41268 and RO1AI55677. In memory of Theresa P. Biron.
Information & Authors
Information
Published In

Science
Volume 312 | Issue 5775
12 May 2006
12 May 2006
Copyright
American Association for the Advancement of Science.
Submission history
Published in print: 12 May 2006
Authors
Metrics & Citations
Metrics
Article Usage
Altmetrics
Citations
Export citation
Select the format you want to export the citation of this publication.
Cited by
- Dual oxidase 1 promotes antiviral innate immunity, Proceedings of the National Academy of Sciences, 118, 26, (e2017130118), (2021).https://doi.org/10.1073/pnas.2017130118
- Dual Nature of Type I Interferons in SARS-CoV-2-Induced Inflammation, Trends in Immunology, 42, 4, (312-322), (2021).https://doi.org/10.1016/j.it.2021.02.003
- Coronavirus Disease 19 and Future Ecological Crises: Hopes from Epigenomics and Unraveling Genome Regulation in Humans and Infectious Agents, OMICS: A Journal of Integrative Biology, 25, 5, (269-278), (2021).https://doi.org/10.1089/omi.2021.0024
- Role of Genetic Variants and Gene Expression in the Susceptibility and Severity of COVID-19, Annals of Laboratory Medicine, 41, 2, (129-138), (2021).https://doi.org/10.3343/alm.2021.41.2.129
- HERBAL FORMULATION (IMMUHELP) IN THE MANAGEMENT OF UPPER RESPIRATORY TRACT INFECTION., GLOBAL JOURNAL FOR RESEARCH ANALYSIS, (10-19), (2021).https://doi.org/10.36106/gjra/5907463
- Antigenic sites in SARS-CoV-2 spike RBD show molecular similarity with pathogenic antigenic determinants and harbors peptides for vaccine development, Immunobiology, 226, 5, (152091), (2021).https://doi.org/10.1016/j.imbio.2021.152091
- Interferon Inducer IFI35 Regulates RIG-I-Mediated Innate Antiviral Response through Mutual Antagonism with Influenza Virus Protein NS1, Journal of Virology, 95, 11, (2021).https://doi.org/10.1128/JVI.00283-21
- Roadblocks and fast tracks: How RNA binding proteins affect the viral RNA journey in the cell, Seminars in Cell & Developmental Biology, 111, (86-100), (2021).https://doi.org/10.1016/j.semcdb.2020.08.006
- Molecular insight, expression profile and subcellular localization of two STAT family members, STAT1a and STAT2, from Japanese eel, Anguilla japonica, Gene, 769, (145257), (2021).https://doi.org/10.1016/j.gene.2020.145257
- An overview of Betacoronaviruses-associated severe respiratory syndromes, focusing on sex-type-specific immune responses, International Immunopharmacology, 92, (107365), (2021).https://doi.org/10.1016/j.intimp.2021.107365
- See more
Loading...
View Options
Get Access
Log in to view the full text
AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.
- Become a AAAS Member
- Activate your AAAS ID
- Purchase Access to Other Journals in the Science Family
- Account Help
Log in via OpenAthens.
Log in via Shibboleth.
More options
Purchase digital access to this article
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
View options
PDF format
Download this article as a PDF file
Download PDF