Synthetic nacre by predesigned matrix-directed mineralization

Li-Bo Mao,1,2 Huai-Ling Gao,1,2 Hong-Bin Yao,1,2 Lei Liu,1,2,3 Helmut Cölfen,3 Gang Liu,4 Si-Ming Chen,1,2 Shi-Kuo Li,1,2 You-Xian Yan,1,2 Yang-Yi Liu,1,2 Shu-Hong Yu1,2,4*

Although biomimetic designs are expected to play a key role in exploring future structural materials, facile fabrication of bulk biomimetic materials under ambient conditions remains a major challenge. Here, we describe a mesoscale “assembly-and-mineralization” approach inspired by the natural process in mollusks to fabricate bulk synthetic nacre that highly resembles both the chemical composition and the hierarchical structure of natural nacre. The millimeter-thick synthetic nacre consists of alternating organic layers and aragonite platelet layers (91 weight %) and exhibits good ultimate strength and fracture toughness. This predesigned matrix-directed mineralization method represents a rational strategy for the preparation of robust composite materials with hierarchically ordered structures, where various constituents are adaptable, including brittle and heat-labile materials.

Biological materials are built from limited components, but their mechanical performances such as strength and toughness are far beyond their artificial counterparts. The secret of success is their hierarchically ordered structure at multiscale levels (1–4). The most studied model among these biological materials is the nacreous part in some mollusk shells that consists of about 95 wt% of brittle aragonitic CaCO3 and 5 wt% of organic materials (5). Mollusks produce nacre by first generating several layers of insoluble β-chitin matrix filled with silk fibroin gel (6). Then aragonite cores form on the surface of the matrix at the nucleation sites (7), followed by lateral growth in the confined space of adjacent organic layers, which finally leads to a Voronoi pattern (5).

These aragonite platelets, despite their single crystal diffraction pattern, are not perfect single crystals but essentially consist of nanograins with the same crystallographic orientation (mesocrystals) whereby the platelets are not as fragile as perfect single crystals (8). The mature nacre has a “brick-and-mortar” micro-structure where aragonite platelet layers are bound by an organic matrix (9). Through a number of such structural designs and toughening mechanisms at multiscale levels (2, 9, 10), nacre reconciles its toughness and strength that are mutually exclusive in most artificial materials (11).

In contrast to biological materials, the evolution of synthetic structural materials has been achieved predominately by developing new synthetic compounds rather than optimizing the micro/nanostructures of existing materials. Therefore, bio-inspired designs of multiscale structures are promising for developing surpassing structural materials (5, 12). However, the fabrication of bulk biomimetic materials is by no means a low hanging fruit (12), because it is hard to balance the well-organized hierarchical structure and the efficiency. For nacre, the strategies used for producing its artificial counterparts can be categorized into three groups: the layer-by-layer technique (13–16), the self-assembly technique (17–20) and the slurry-based freeze-casting/magnetic-field-assisted slip-casting and sintering technique (21–25). Although these artificial materials are to some extent similar to natural nacre, the state-of-the-art techniques focus on mimicking the layered structure by anisotropic assembly of building blocks, but have not achieved the fabrication of bulk synthetic nacre via a mineralization strategy that is adopted by many living creatures to produce biomaterials including nacre (5–7). Furthermore, the high-temperature heat treatment (22–25) excludes many heat-labile materials and thus significantly limits their applications.

Considering that mollusks build their nacre by the mineralization in a preformed laminated matrix (5), we developed a consecutive assembly-and-mineralization process (Fig. 1) to produce synthetic nacre by a mesoscale approach where the nanostructure and the microstructure are controlled simultaneously. Through a freezing-induced assembly process (Fig. 1, A and B, and fig. S1), a chitosan matrix with predesigned laminated structure is fabricated (fig. S2, A, B, D, and E). Then the matrix is acetylated (Fig. 1C) and transformed to β-chitin to avoid unwanted swelling or dissolution (fig. S2, C and E, and table S1). The acetylated ma-
A matrix is mineralized in a peristaltic pump-driven circulatory system via the decomposition of calcium bicarbonate rather than the gas-diffusion method because the spontaneous diffusion of CO₂ (Fig. 4B) is much slower than the direct pump-driven injection of Ca(HCO₃)₂ (Fig. 4C, D). Consequently, the whole matrix mineralizes to the extent that the resulting synthetic nacre contains as much as 91 wt% of CaCO₃, which is quite comparable to natural nacre (5). Because of the high inorganic content, the synthetic nacre exhibits high stability in water without significant swelling (movie S1). More importantly, while the growth of natural nacre takes months or even years, only two weeks are needed for the preparation of the bulk synthetic nacre whose composition is almost the same as natural nacre (figs. S3 and S5) (5).

The synthetic nacre shares striking similarities with natural nacre from the shell of a mollusk such as Anodonta woodiana. The fracture surface of the bulk synthetic nacre reveals a laminated nacre-like microstructure (Fig. 2, A to D; fig. S6, A and B; and movie S2). The thickness of the alternating aragonite and organic layers is 2-4 μm and 100-150 nm, respectively. Hence it is supposed that the Bragg diffraction-induced structural coloration (5) of the synthetic nacre is not in the visible range (Fig. 2B). Each mineral layer is made up of tile-like aragonite platelets and exhibits a structure similar to Voronoi patterns, which is typically observed in natural nacre (Fig. 2, E and F) (5). However, as the mineralization conditions are complicated and the control of the process in our experiment is not as good as the bio-mineralization process in mollusks, the Voronoi patterns are not so perfect in the synthetic nacre (red circles in Fig. 2F). The formation of this pattern can be ascribed to the growth mechanism that CaCO₃ selectively precipitates at some nucleation sites (white arrows in Fig. 2F) that were identified to be rich in carboxyl groups (7), and then these initial crystals grow laterally on the chitin layers until they meet each other to form a boundary (fig. S6C and movie S3). As the matrix gradually mineralizes, the chitin layers are assimilated by the minerals probably because of electrostatic attraction (figs. S7 and S8), whereas the infiltrated silk fibroin forms the organic layers between the aragonite layers (Fig. S9). Both the average size and the aspect ratio of the aragonite platelets in the synthetic nacre are significantly larger than that in Anodonta woodiana nacre (fig. S10), which greatly affects the properties of the as-fabricated nacre-like materials (19).

The aragonite platelets in the synthetic nacre consist of attached nanograins with diameters ranging from 10 to 100 nm (Figs. 2H and 3A), in accordance with that in natural nacre (Fig. 2G) (8). Further analysis of the nanograins reveals the crystallographic features of the platelets (Fig. 3, B to D). The single-crystal-like FFT patterns (Fig. 3, C and D) of the boundary areas (Fig. 3B) indicate the orientation continuity between adjacent nanograins in a single platelet, as the precipitation of CaCO₃ in our experiment should follow a nonclassical crystallization mechanism (27, 28). Although the aragonite platelets are mesocrystals (27) due to the orientation continuity of individual nanoparticles, the aragonite platelets in a layer grow independently (fig. S6C and movie S3) and thus the crystal orientation degree of the whole synthetic nacre is as low as ~9%. Therefore, a single aragonite layer shows distinctive dark and bright mosaics under cross-polarized light where the brightness of these tiles depends on their orientations (Fig. 3E and fig. S10A). In addition, the adjacent layers do not contact each other during the mineralization process (fig. S4D) and thus the orientations of the adjacent layers are also self-reliant. Consequently, the x-ray diffraction (XRD) pattern of the synthetic nacre is in line with Anodonta woodiana nacre powder where the aragonite platelets are randomly oriented, but not bulk Anodonta woodiana nacre where all the platelets have near-parallel (002) planes (fig. S3).

The microscopic mechanical properties of the synthetic nacre are comparatively studied by nanoindentation (NI). Long cracks are induced by the indents in both monolithic calcite and aragonite, and then they propagate easily along the cleavage planes (8). In comparison, no microscopic crack or crack propagation is observed in natural and the synthetic nacre (Fig. 4A). The excellent anti-flaw performance of both Anodonta woodiana and the synthetic nacre can be attributed to their unique connected-nanograin structure (Fig. 2, G and H) (29). Like the nanograins in natural nacre that are bound by organics like proteins (8), it is suggested that the nanograins in the synthetic nacre (Fig.
nacre. Consequently, while there are weak cleavage planes in abiotic single crystals, there is no cleavage plane in these mesocrystals; the energy can be dissipated efficiently via breaking the bonding between nanograins, and the nanoracks in these mesocrystals can be localized (8, 32). Using the Olive-Pharr model to analyze the data obtained from the NI tests, it can be found that the synthetic nacre undergoes losses in its elastic modulus and hardness (fig. S11), which is ascribed mainly to the thick grain boundaries between the aragonite nanograins (Fig. 3A, fig. S12, and the calculation in the supplementary materials). It is estimated that the volume fraction of organic components in the synthetic nacre is about 14%, while in Anodonta woodiana nacre it is less than 8%. Accordingly, the macroscopic density of the synthetic nacre is significantly smaller than that of aragonite and Anodonta woodiana nacre (fig. S13). Moreover, because the organic components in the grain boundaries are sensitive to water, the elastic modulus of the fully hydrated synthetic nacre decreases while the ultimate strain increases significantly (fig. S14).

As the composition and the hierarchical structure of the synthetic nacre bear a striking resemblance to natural nacre, the macroscopic mechanical properties of the synthetic nacre are also superior to pure aragonite and its related composites, and comparable to that of natural nacre (Fig. 4B; see also fig. S13). The rising crack extension resistance curves of both the synthetic and natural nacre indicate intrinsic toughening mechanisms in these materials (Fig. 4C). The reinforced performance of the synthetic nacre is attributed to the structural features at multiscale levels where the organic components play a key role (figs. S15 and S16). The assembled-nanograin architecture and the organic binders (e.g., PAA and chitin) by which energy can be dissipated and nanocracks can be localized are the structural basis of the macroscopic performance of the synthetic nacre. Moreover, the laminated nacre-like structure leads to crack branching, crack deflection, crack blunting, crack trapping in the organic layers and platelets bridging (Fig. 4, D and E; see also fig. S17, E and F) (33). Some microscopic features such as platelet waviness and dovetail structure that are responsible for the hardening and damage tolerance in natural nacre (34) have also been observed in the synthetic nacre (fig. S18). In addition, the delamination process is retarded by the infiltrated silk fibroin binding layers and thus further dissipates energy (Fig. 4F; see also fig. S9, A and B). However, because their microstructures (fig. S19) as well as the suggested micromechanical models are not exactly the same (fig. S20), the mechanical properties of the synthetic nacre are still not as good as that of natural nacre (35, 36) (Fig. 4, B and C). Due to the larger aspect ratio of the aragonite platelets in the synthetic nacre, the platelets exhibit a “partly-pull-out” behavior, which leads to lower crack-resistance capability.

Because the precipitation of the second phase onto the matrix relies on electrostatic force, CaCO3 and chitin can be substituted by other precursors with opposite charges to make superior composites such as engineering ceramics (27–24) (see figs. S21 and S22). Besides, as the dependence of properties of the composite materials on the characteristic length of their periodic microstructure (37), the mechanical performance of these materials can be optimized by adjusting the properties of the original matrix (38) which affect both the amount of electrostatically absorbed precipitates and the density of the nucleation sites. The fabrication of the laminated synthetic nacre is not a special case; there are other techniques such as programmable 3D printing for constructing predesigned macroscopic matrices that can be readily incorporated with our strategy to produce composite materials. Moreover, this strategy is also adaptable for fabricating robust bulk materials with brittle and heat-labile components (fig. S21B). Given the importance of nano- and microscopic structures for the materials performance, we thus anticipate that our method can be extended to produce various composite materials with unique properties.

REFERENCES AND NOTES

Fig. 1. Fabrication scheme of the synthetic nacre. (A) Starting solution, chitosan/acetic acid solution. (B) Freeze-casted laminated chitosan matrix. (C) Matrix after acetylation where chitosan is converted to β-chitin. (D) Mineralization of the matrix. Fresh mineralizing solution is pumped to flow through the space between the layers in the matrix, bringing in Ca$^{2+}$, Mg$^{2+}$, HCO$_3^-$ and PAA for mineralization, and taking out excess CO$_2$. CaCO$_3$ precipitates onto the layers and CO$_2$ diffuses into the air through the pin holes in the paraffin film. (E) Laminated synthetic nacre is obtained after silk fibroin-infiltration and hot-pressing.
Fig. 2. The comparison of the appearance and multiscale structure between natural and the synthetic nacre. Caption (A) Anodonta woodiana nacre. (B) Bulk synthetic nacre. (C and D) Fracture surface of (C) Anodonta woodiana nacre and (D) the synthetic nacre. (E and F) Voronoi pattern of the aragonite layer in (E) Anodonta woodiana nacre and (F) the synthetic nacre. (G and H) Enlarged micrographs of the aragonite platelet of (G) Anodonta woodiana nacre and (H) the synthetic nacre. Scale bars are 1 cm, 1 cm, 3 μm, 3 μm, 5 μm, 100 μm, 100 nm, and 100 nm for (A) to (H), respectively.
Fig. 3. Crystallographic structure of the synthetic nacre. (A) Cross-sectional transmission electron microscope (TEM) image of the synthetic nacre. The inset shows the view direction. (B) High-resolution TEM (HRTEM) image of the selected area in (A). The boundaries of the nanograins are marked with dashed blue lines. (C and D) Fast Fourier transformation (FFT) of the selected squares denoted by red lines in (B), where (C) corresponds to the top right square and (D) the bottom left. (E) Optical micrograph of the aragonite layer under cross-polarized light, where the inset shows the view direction. Scale bars are 100 nm, 10 nm, and 50 μm for (A), (B), and (E), respectively.
Fig. 4. Mechanical properties of the synthetic nacre. (A) Residual indents of the Berkovich diamond tip in abiotic minerals, *Anodonta woodiana* (AW) nacre and the synthetic nacre. (B) Specific fracture toughness versus specific ultimate flexural strength, illustrating the mechanical performance of the synthetic nacre, natural nacre, pure aragonite and their related materials. (C) Rising crack extension resistance curves (K-based) of the synthetic nacre and some natural nacre. (D) Profile of the fractured synthetic nacre showing the multiple toughening mechanisms. (E) Crack deflection between layers and crack branching [enlarged micrograph of the marked area in (D)]. (F) Crack-induced inter-lamellar debonding in the synthetic nacre (enlargement of the marked area in (E)). The data of *Pinctada margaritifera* and *Haliotis rufescens* are adapted from (35) and (36). Scale bars are 10 μm, 200 μm, 40 μm, and 2 μm for (A), (D), (E), and (F), respectively.