Compartmentalized Control of Skin Immunity by Resident Commensals

Shruti Naik, Nicolas Bouladoux, Christoph Wilhelm, Michael J. Molloy, Rosalba Salcedo, Wolfgang Kastenmuller, Clayton Deming, Mariam Quinones, Lily Koo, Sean Conlan, Sean Spencer, Jason A. Hall, Amiran Dzutev, Heidi Kong, Daniel J. Campbell, Giorgio Trinchieri, Julia A. Segre, Yasmine Belkaid

1Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. 2Immunoology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA. 3Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. 4SAIC-Frederick Inc., National Cancer Institute, Frederick, MD 21701, USA. 5Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. 6Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA. 7Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. 8Research Technology Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA. 9Molecular Pathogenesis Program, Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA. 10Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA. 11Benaroya Research Institute, Seattle, WA 98101, USA. 12Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA.

*To whom correspondence should be addressed. E-mail: ybelkaid@niaid.nih.gov

Intestinal commensal bacteria induce protective and regulatory responses that maintain host-microbial mutualism. The contribution of tissue resident commensals to immunity and inflammation at other barrier sites; however, has not been addressed. Here, we report an autonomous role for the skin microbiota in controlling the local inflammatory milieu and tuning resident T lymphocyte function. Protective immunity to a cutaneous pathogen was critically dependent on the skin but not gut microbiota. Furthermore, skin commensals tuned the function of local T cells in a manner dependent on signaling downstream of the interleukin-1 receptor (IL-1R). These findings underscore the importance of the microbiota as a distinctive feature of tissue compartmentalization, and provide insight into mechanisms of immune regulation by resident commensal niches in health and disease.

Mammals have formed an evolutionary partnership with the microbiota that is critical for metabolism, tissue development, and host defense (1–3). In particular, the gut flora has been implicated in intestinal immune tissue development and function, as well as in promoting systemic inflammation in the context of autoimmunity and infection (1, 4–8). Despite our growing understanding of the consequences of this host-microbe alliance on intestinal immune function, the degree to which the gut flora contributes to immunity at distal sites remains unclear.

The skin represents the primary interface between the host and the environment. Microbial profiling has revealed the presence of highly diverse commensal communities along distinct topographical skin sites (9, 10). Moreover, cutaneous inflammatory disorders, such as psoriasis, atopic dermatitis, and rosacea have been associated with dysbiosis in the cutaneous microbiota (11, 12). Indeed, microbial products from skin commensals are known to exert immunoregulatory effects (13). In humans, commensals reside in defined niches such as hair follicles and sebaceous glands (14). Microbes or microbial products densely coat the outer skin layer, hair follicles, and sebaceous glands in mice raised under Specific Pathogen Free (SPF) conditions (Fig. 1A). As previously described (15), the skin tissue of SPF mice contains a high frequency of Foxp3+ regulatory T cells (Treg) (Fig. 1B and fig. S1, A and B). This compartment is also home to T cell receptor γδ T cells with the potential to produce substantial amounts of the cytokines interferon-γ (IFN-γ) or IL-17A, the latter produced by CD4+ and CD4- CD8 T cells (Fig. 1, B and C, and fig. S1, A to C), as well as T cell receptor γδ T cell-derived dermal T cells (Fig. 1C and fig. S1, A and B) (16). Microbe-derived products are undetectable in the skin of germ free mice (GF) that are born and raised in aseptic conditions (Fig. 1A). In the intestine, the balance between effector and regulatory T lymphocytes is tightly controlled by commensal signals (17–19). Similarly, we observed a significant reduction in IFN-γ and IL-17A production by γδ T cells, and IL-17A by γδ T cells in skin tissue of GF mice compared to SPF mice (Fig. 1, B and C, and fig. S1D). Concomitantly, the frequency and absolute numbers of cutaneous Foxp3+ Treg was increased in the absence of commensals (Fig. 1B and fig. S1D). The influence of commensals on T cell subset frequencies did not extend to draining lymph nodes (fig. S2A).

Defects in effector responses, observed in the gut of GF mice, have in part been attributed to impaired development of tissue and associated lymphoid structures (5). A survey of skin homing receptors on peripheral T cells and frequencies of cutaneous γδ, γδ T cells, eosinophils, mast cells, and DC subsets revealed no differences between GF and SPF mice (fig. S2, B to F). In line with previous analyses (20, 21), the cellularity and architecture of skin draining lymph nodes were preserved in GF compared to SPF mice (fig. S2, C and G). Thus, effector T cell functional potential in the skin is critically dependent on signals from the commensal microbiota and independent of developmental defects.

Differences in dermal T cell effector profiles in GF mice may result from a lack of signals from the gut flora, which have been implicated in the control of both local and systemic immune responses (4, 7, 8, 22). In particular, mice harboring Segmented Filamentous Bacteria (SFB) in their gastrointestinal (GI) tract display increased intestinal levels of CD4+ T cell-derived IL-17A and IFN-γ compared to mice devoid of this bacterium (23, 24). Consistent with previous reports, mono-association of GF mice with SFB reconstituted IL-17A and IFN-γ to levels observed in the GI tract of SPF mice (fig. S3, A and B). In contrast, the presence of SFB did not restore effector cytokine production or alter Treg frequencies in the skin (fig. S3, A to C). To further address this point, we used a well-established oral antibiotic regimen known to decrease the density of intestinal flora (17, 19, 25). After oral antibiotic treatment the overall density and composition of gut, but not skin microbiota, were significantly altered (17) (Fig. 2A and fig. S3, D and E). Alterations of gut flora had no effect on the capacity of T cells to produce inflammatory cytokines (Fig. 2B). We next mono-associated GF mice with the skin commensal Staphylococcus epidermidis (9). Colonization with this single commensal organism was sufficient to rescue IL-17A production in the skin, but not the gut (Fig. 2, C and D). Furthermore, treatment with oral vancomycin to prevent S. epidermidis from colonizing the gut had
no effect on this bacterium’s ability to rescue cutaneous IL-17A levels (fig. S3F). Altogether, our results demonstrate that resident bacteria are necessary to drive effector T cell function in the skin, and that fluctuations in the gut microbiota have no direct effect on cutaneous immune homeostasis.

To evaluate the functional consequences of skin commensals on local immunity we utilized a model of dermal infection induced by the protozoan parasite *Leishmania major* (26). Protective immunity to *L. major* is dependent on T cell derived IFN-γ (26). Previous work demonstrated impaired parasite control in the absence of commensals upon intramuscular parasite delivery (27). Compared to SPF mice, GF mice infected intradermally with *L. major* manifested smaller lesions with reduced edema and necrosis (Fig. 3, A and B). Effector responses were severely impaired in GF mice as evidenced by a reduction in *Leishmania* specific IFN-γ and the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) production by cutaneous T cells (Fig. 3, C to E, and fig. S4A). Altered immunity and parasite control were not associated with increased Treg frequencies or IL-10 responses (fig. S4, B and C).

To corroborate a role for skin commensals in promoting immunity to *L. major*, we mono-associated GF mice with *S. epidermidis* at the time of infection. Colonization of GF skin with this commensal was sufficient to rescue protective immunity in these animals (Fig. 3, F to H, and fig. S4D). Mono-association of GF mice with *S. epidermidis* also restored pathology with increased necrosis supporting the idea that pathological consequences of this skin infection depend on the presence of commensals rather than the parasite (Fig. 3F, G). Further implicating cutaneous commensals in the direct control of skin immunity and inflammation, oral vancomycin treatment of GF animals associated with *S. epidermidis* in the direct control of skin immunity and inflammation, oral vancomycin treatment of GF animals associated with *S. epidermidis* had no influence on immunity and pathology during *L. major* infection (fig. S4, E and F).

To date, the dominant cytokine signals that drive effector cytokine production by T cells in the skin have not been elucidated. By screening mice that were deficient in factors known to drive IL-17A production, we determined that IL-1R1 and its downstream signaling complex MyD88, but not IL-23R or IL-6, played a dominant role in controlling the production of IL-17A but not IFN-γ by cutaneous T cells (Fig. 4A and fig. S5, A to C). Toll like receptor 2 (TLR2), which also relies on MyD88 dependent signaling, is required to sense byproducts from *S. epidermidis* during skin inflammation (13). However, mice deficient in TLR2 as well as TLR3, 5, 9 did not display a reduction in T cells or cytokine production compared to control mice under steady state conditions (fig. S5D). Hence, our data support the idea that the defect in IL-17A observed in MyD88 deficient mice is primarily a consequence of altered IL-1R1-mediated signaling. Consistent with a partitioning of the dominant signals controlling the skin and gut environment, MyD88 or IL-1R1 deficiency had no impact on T cell potential to produce IL-17A in the intestine (Fig. 4A). Both αβ and γδ effector T cells are known to express IL-1R1, and respond directly to IL-1 (28–31). We purified skin lymphocytes and stimulated them via their T cell receptor in the presence of IL-1α, IL-1β, or IL-6. Under these conditions, IL-1α and IL-1β but not IL-6 potently increased the capacity of T cells to release IL-17A (Fig. 4B and fig. S5E). Thus, T cells that reside at dermal sites can be functionally tuned by the local cytokine milieu and in particular IL-1.

We next explored the possibility that IL-1 signaling may be diminished in the absence of commensals. Indeed, IL-1α production by cutaneous cells was significantly reduced in GF compared to SPF mice, and mono-association of GF mice with *S. epidermidis* restored the production of this cytokine (Fig. 4C). Additionally, keratinocytes from GF mice displayed increased levels of the IL-1 receptor antagonist (IL-1ra) mRNA compared to SPF mice indicating that commensals control various aspects of functional IL-1 signaling (fig. S5F). Complementing these observations, the addition of *S. epidermidis* to GF mice significantly reduced IL-1ra from cutaneous cells (fig. S5G). Therefore, resident commensals are required for optimal IL-1 signaling in the skin, which in turn promotes local effector responses.

To ascertain the importance of the MyD88 pathway on hematopoietic cells, we generated mixed bone marrow chimeras using MyD88/TRIF knockout mice which phenocopied MyD88 knockout animals in their cutaneous IL-17A deficiency. (fig. S5, A, H, and I). Of note, irradiation required for generating chimeras induces inflammation and homeostatic proliferation of T cells. Under these inflammatory conditions, MyD88 signaling in hematopoietic cells was required for the production of both IFN-γ and IL-17A in the skin, but not in the gut (Fig. 4D). Furthermore, mice deficient in MyD88, IL1R1, or mice treated with IL1ra displayed impaired effector responses and parasite control during *L. major* infection (Fig. 4, E to G, and fig. S5J).

These results support the idea that defects in T cell function at steady state or during inflammation result from an impaired dialogue with skin commensals. To functionally link commensally driven IL-1 signaling to T cell immunity in the skin GF mice mono-associated with *S. epidermidis* were treated with IL-1ra at steady state and during *L. major* infection. Neutralizing IL-1 activity in these animals hindered this bacterium’s ability to rescue IL-17A at steady state and promote *L. major*-specific IFN-γ during infection (Fig. 4, H and I). Thus, via their capacity to control IL-1 signaling, skin commensals promote effector T cell responses according to local inflammatory cues. On the basis of the pleiotropic role of IL-1, this effect may result from direct IL-1 signaling in T cells and/or modulation of various innate inflammatory cells such as neutrophils (32).

Altogether, our work proposes that resident commensals are necessary for optimal skin immune fitness. Specifically, we find that cutaneous commensals exert their affect by augmenting IL-1 signaling and amplifying responses in accordance with the local inflammatory milieu. The IL-1 pathway is an evolutionarily conserved arm of the innate immune system that may have arisen as an early mediator of host skin-commensal cross talk. This pathway is also linked to a multitude of chronic inflammatory disorders such as arthritis and asthma. Of relevance to our present study, IL-1 is implicated in the etiology and pathology of psoriasis and other cutaneous disorders (33). Thus, via their capacity to promote IL-1 signaling and consequently effector T cell function, skin commensals are likely important drivers and amplifiers of skin pathologies. Understanding the role of the skin microbiota in maintaining tissue function is not only of primary importance for human health, but will also lead to the development of more rational tissue specific adjuvants and vaccine approaches.

References and Notes

25. S. Rakoff-Nahoum et al., Interleukin-1 and IL-23 induce innate IL-17 production from gammacelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331 (2009). doi:10.1016/j.immuni.2009.08.004 Medline
28. C. E. Sutton et al., Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331 (2009). doi:10.1016/j.immuni.2009.08.004 Medline
29. S. Rakoff-Nahoum et al., Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331 (2009). doi:10.1016/j.immuni.2009.08.004 Medline
Fig. 1. Commensal microbiota control the balance of effector and regulatory T cells in the skin tissue. (A) Immunofluorescence labeling of bacterial products in (1) interfollicular keratinocytes and (2) hair follicles from skin tissue of specific pathogen-free (SPF) and germ-free (GF) mice. Representative images of naïve skin stained with anti-E. coli lysate antibody (Red) or isotype control and HOECHST (Blue). (B) Representative flow cytometric plots and summarized bar graphs of IFN-γ, and Foxp3 expression by live CD45+ TCRβ cells extracted from skin tissue of SPF (■) and GF (□) mice after phorbol myristate acetate (PMA)/ionomycin stimulation. Graphs show the mean of 3-4 mice ± SEM (*p < 0.05, **p < 0.005). Results are representative of 3 experiments. (C) Representative flow cytometric plots and summarized bar graphs of IL-17A expression in live CD45+ TCRγδ or CD45+ TCRαβ cells from skin tissue of SPF (■) and GF (□) mice after PMA/ ionomycin stimulation. Graphs show a mean of 3-4 mice ± SEM (*p < 0.05, ***p < 0.0005). Results are representative of 3 experiments.

Fig. 2. Distinct commensal niches control T cell cytokine production in the gut and skin. (A) Taxonomic classifications at the phylum level for 16S rRNA gene sequence data clustered at 97% identity from skin tissue and fecal pellet of control and antibiotic treated mice treated for 4 weeks. Each column represents an individual mouse. (B) Assessment of IFN-γ production in live CD45+ TCRβ cells and IL-17A production in live CD45+ cells from skin and intestine of mice treated with oral antibiotic cocktail (ATB (□)) or water (Ctrl (■)) for 4 weeks. Graphs represent a mean of 4 mice ± SEM, (**p < 0.005, ***p < 0.0005). Results are representative of 2-3 experiments. (C and D) Flow cytometric analysis of IL-17A production in live CD45+ TCRβ cells from the gut and skin of SPF, GF and GF mice mono-associated with S. epidermidis (GF+S.epi) for 2-3 weeks. Graphs represent the mean of 3-5 mice ± SEM, (**p < 0.005). Results are representative of 2 experiments.
Fig. 3. Cutaneous commensals drive immunity and promote pathology in *Leishmania major* infection. (A and B) Histopathological comparison of ear pinnae skin lesions from *L. major* infected SPF and GF mice. Assessment of lesion size in SPF (●) and GF (○) mice. Each data point represents an individual mouse (***p < 0.0005). (C and D) Flow cytometric analysis of *Leishmania* antigen-specific IFN-γ and TNF-α production by TCRβ⁺ CD4⁺ dermal cells from *L. major* infected SPF (●) and GF (○) mice. Each data point represents an individual mouse (***p < 0.005, ***p < 0.0005). Results are representative of 3 experiments. (E) Number of *L. major* parasites per 1000 nucleated cells from dermal lesions of infected SPF (●) and GF (○) mice. Each data point represents an individual mouse (***p < 0.0005). (F) Assessment of lesion size in SPF (●), GF (○), and GF mice mono-associated with *Staphylococcus epidermidis* (GF + S.epi (●)). Each data point represents an individual mouse, (**p < 0.005). Results are representative of 2 experiments. (G and H) Representative image of *L. major* skin lesions and analysis of IFN-γ production by live CD45⁺ TCRβ⁺ cells from SPF (●), GF (○) and GF + S. epi (●) mice. Each data point represents an individual mouse (**p < 0.005, ***p < 0.0005). Results are representative of 2 experiments.
Fig. 4. Skin resident commensals modulate dermal T cells in an IL-1/MyD88 dependent manner. (A) Flow cytometric analysis of IL-17A production by live CD45+ TCRβ+ cells in skin and intestine of age matched Myd88−/− and Il1r1−/− mice. Graphs represent a mean of 3-4 mice ± SEM (**p < 0.0005). Results are representative of 2-3 experiments. (B) IL-17A production from purified skin CD45+ TCRβ+ T cells cultured in vitro in the presence of anti-CD3 and either IL-1α, IL-1β, or IL-6. Graphs represent the mean of 3 experimental groups ± SEM (*p < 0.05). Results are representative of 3 experiments. (C) Spontaneous release of IL-1α from skin derived cells of SPF (■), GF (□), and GF + S.epi (●) ± SEM mice as measured by ELISA. (D) Comparative assessment of IFN-γ and IL-17A production from wildtype (WT) and Myd88−/−/Ticam2−/− (Ticam2 encodes TRIF) TCRβ+ cells from mixed bone marrow chimeric mice. Bar graphs show the frequency of cytokine production by knockout and wildtype (WT) TCRβ+ cells ± SEM. Results are representative of 2 experiments in the skin and 1 experiment in the gut. (E and F) Analysis of L. major infected wildtype (WT) (●) and Myd88−/−/Ticam2−/− (Ticam2 encodes TRIF) TCRβ+ cells from mixed bone marrow chimeric mice. Results are representative of 2 experiments. (G) Flow cytometric assessment of L. major specific IFN-γ production from CD45+ T cells from the skin of SPF animals treated with either IL-1ra (○) or PBS (●). Results are a compilation of 2 experiments. (H) Number of CD45+ TCRβ+ IL-17A+ T cells from the skin of GF mice mono-associated with S. epidermidis treated with either IL-1ra (○) or PBS (●). Results are representative of 1 experiment. (I) L. major specific IFN-γ produced by TCRβ+ CD45+ T cells from the skin of GF mice mono-associated with S. epidermidis and treated with either IL-1ra (○) or PBS (●). Results are representative of 2 experiments. For (E) to (I), each data point represents an individual mouse (**p < 0.005, ***p < 0.0005).